Обеспечение надежности при строительстве и эксплуатации подводных переходов трубопроводов через водные преграды

Автор работы: Пользователь скрыл имя, 09 Ноября 2015 в 19:36, курсовая работа

Краткое описание

Обеспечение стабильного функционирования, надежности и безопасности магистральных нефтепроводов входит в ряд первоочередных задач при их строительстве и эксплуатации любой трубопроводной системы. С точки зрения эксплуатационной надежности магистральных трубопроводов к участкам с повышенным риском эксплуатации можно отнести переходы через естественные и искусственные преграды. Повышенный риск эксплуатации любого подводного перехода по сравнению с основной частью магистрального трубопровода определяется не сколько вероятностью возникновения аварийной ситуации, сколько большими экологическими проблемами и экономическими затратами на устранение ее последствий.

Содержание

Введение
1. Теоретическая часть 4
1.1 Общие сведения о подводных переходах 4
1.2 Инженерные решения по обеспечению надежности эксплуатируемых подводных переходов 6
1.3 Методы прокладки подводных переходов трубопроводов 15
ІІ. Расчетная часть 19
2.1 Определение устойчивости против всплытия подводного трубопровода с учетом гидродинамического воздействия потока воды на трубу19
2.2 Определение параметров балластировки трубопровода21
2.2 Определение параметров укладки подводного трубопровода на дно траншеи протаскиванием на первой и четвертой стадиях22
Заключение
Список использованных источников

Вложенные файлы: 1 файл

SPNGP100 (1).docx

— 1.01 Мб (Скачать файл)

Рис. 1.4 - Схема подогрева газа на пойменных участках речных переходов посредством двух подогревателей ПТс 160/150

 

Обледенение открытого участка дюкера приводит к увеличению гидродинамических сил, воздействующих на трубопровод, а также к возможности его всплытия. Поэтому важным является контроль толщины слоя льда на поверхности дюкера. Проведение контроля должно давать информацию о текущем состоянии поверхности дюкера, на основании которой принимается решение по устранению слоя льда, его полному или частичному оттаиванию. Контроль основывается на измерении толщины намерзшего слоя по длине дюкера. Свойство воды - резкое изменение проводимости при переходе её в твердое состояние - было использовано при разработке датчика обледенения. Два проводника, отстоящие друг от друга на определенное расстояние (в виде пластин конденсатора), помещены в воду и подключены к источнику питания. В цепь включен измерительный прибор. Общее сопротивление замкнутой электрической цепи складывается из сопротивления проводников и разделяющего пластины слоя воды. При превращении этого слоя в лед общее сопротивление цепи резко (на несколько порядков) возрастает, что может быть зафиксировано измерительным прибором. Поскольку изменение сопротивления, связанное с обледенением, можно контролировать по изменению силы тока в цепи, либо непосредственным изменением величины сопротивления, то в качестве измерительного прибора можно использовать амперметр или омметр.

Конструктивно датчик обледенения выполнен с учетом специфики внешних условий измерений следующим образом (рис. 1.5).

Рис. 1.5 - Датчик обледенения

Две пластины из нержавеющего материала 1связаны в каркас для обеспечения жесткости пластинами 2 из изоляционного материала (текстолит, гетинакс и т.д.).

От пластины 1 отведены два провода 3, образующих совместно с ними измерительную цепь. Для устранения механических повреждений пластины 1, 2 покрываются колпаками 4. В случае выполнения колпака 4 из электропроводящего материала необходимо предусмотреть электроизоляцию пластины 1 от колпака 4. Для обеспечения циркуляции воды и предотвращения разрушения датчика при расширении льда внутри колпака 4 в последнем делается ряд сквозных отверстий. Отверстия выполняются в одной плоскости по всей высоте колпака 4, причем плоскость отверстий целесообразно устанавливать перпендикулярно потоку воды. Диаметр отверстий можно принять около 3÷5 мм. Колпак с закрепленным в нем каркасом крепится к дюкеру посредством хомута.

Для рек, имеющих небольшую глубину (2 м), актуальной является проблема защиты дюкера от льдин в паводковый период. Технические решения, осуществляющие эту защиту, представлены на рис. 1.6 и 1.7.

Рис. 1.6 - Варианты защиты участков дюкера от торсов льда на мелководье в качестве временной меры до посадки дюкера на проектные отметки

а)

б)

в)

г)

 

 

 

 

 

 

 

Рис. 1.7 - Посадка дюкера на уровень дна (верхняя образующая трубопровода)

 

На рис. 1.6 а, б защита предусмотрена железобетонными панелями, устанавливаемыми в виде ''крыш" с одной или обеих сторон дюкера и скрепляемых между собой. На рис. 1.6 в представлено решение, в котором используются трубы, разрезанные на скорлупки и образующие кожух над трубой. Обеспечение устойчивости кожухов производится якорными устройствами с тросом. Кожух можно создать и установкой железобетонных пригрузов (рис. 1.6 г). С точки зрения устойчивости и безопасности трубопровода предпочтительней вариант на рис. 1.7,в котором предусматривается заглубить участки дюкера по верхней образующей до уровня дна или вариант рис. 1.6 в.

Инспекция состояния подводного трубопровода проводится различными методами. Очень важным элементом инспекции является её периодичность. Так, например, в Великобритании подводный трубопровод обследуют сразу после окончания строительства и через 6 месяцев после начала эксплуатации. Данные этих обследований сравниваются и, если они не различаются, следующее обследование выполняется через год, причем обнаруженные отклонения от правил эксплуатации должны быть исправлены. В Нидерландах требуется ежегодное обследование подводных трубопроводов, если их укладка выполнена в соответствии с проектом. В случае отклонения от проекта обследования могут быть назначены два раза в год.

Наибольшие по величине гидродинамические нагрузки дюкер с размытым участком будет испытывать в паводковый период. Следовательно, целесообразно обследование производить зимой, перед паводком. Наиболее подходящим временем для обследования является январь или февраль. В случае обнаружения размытого участка ремонтные и профилактические работы проще производить зимой, перевозя бетонные блоки или щебень, гравий по льду реки к вырезанным во льду прорубям.

Одним из методов инспекции подводных трубопроводов может служить техническое решение, предложенное английской компанией "Britsh gas". Фирма разработала и, по опубликованным в печати данным, с успехом применяет для обследования магистральных газопроводов прибор, перемещающийся внутри трубопровода и определяющий высотное положение газопровода, толщину слоя грунта под трубопроводом и толщину его стенки.

Для обследования подводных газопроводов на переходах через реки компания "Wimpol"разработала в 1986 - 87 гг. электромагнитную сканирующую систему. По опубликованным данным система обеспечивает получения продольного профиля трубопровода и его плановое положение относительно русла реки. Кроме того, система позволяет установить отметки дна реки и характер эрозионных явлений.

ВНИИГАЗом разработана "Методика оценки фактического положения и состояния подземных трубопроводов", которая может применяться для определения пространственного положения трубопровода и состояния изоляционного покрытия.

 

1.2 Методы прокладки подводных переходов трубопроводов

подводный трубопровод гидродинамический надежность

При проектировании подводных переходов через водные преграды разработчики опираются на данные гидрологических, инженерно-геологических и топографических изысканий с учетом специфики эксплуатации в данном районе ранее построенных подводных переходов, существующих и проектируемых гидротехнических сооружений, которые могут оказать влияние на режим водной преграды в месте перехода, планируемых дноуглубительных работ, а также на требования по охране водных ресурсов.

В мировой практике строительства подводных переходов наиболее широкое применение получили методы их прокладки, которые условно можно разделить на две группы: траншейные и бестраншейные. Одним из самых распространенных методов строительства подводных переходов является траншейный метод (рис. 1.8). Он включает в себя подводную разработку траншеи специальной землеройной техникой (земснаряды, грунтососы, гидромониторы, скреперы и т. д.) и одновременно с этим подготовку дюкера. Применяются три основных метода укладки трубопровода в подводные траншеи: протягивание по дну; погружение с поверхности воды трубопровода полной длины и укладка с плавучих средств и опор.

Каждый из перечисленных методов укладки имеет свои недостатки, основным из которых является большой объем подводно-технических и земляных работ, связанных с разработкой траншеи, однако при определенных условиях имеют ряд преимуществ. Чаще всего траншейный метод строительства подводных переходов применяется в случаях невозможности использования бестраншейных методов, характеризующихся рядом ограничений.

В настоящее время широкое распространение получили бестраншейные методы строительства подводных переходов магистральных трубопроводов: наклонно направленное бурение, микротоннелирование, тоннелирование, вантовые и др.

При использовании бестраншейных технологий строительства подводных переходов отсутствуют недостатки традиционных методов, уменьшается неблагоприятное воздействие на окружающую среду, в том числе гидрологию водоемов, повышается надежность трубопровода.

Строительство подводных переходов методом наклонно направленного бурения (ННБ), в зависимости от характеристик водных преград, технических характеристик используемых буровых установок, технологии бурения, конструктивных параметров протаскиваемого трубопровода, осуществляется по различным технологическим схемам. Общими для всех технологических схем являются основные этапы ННБ:

а) бурение пилотной скважины;

б) расширение скважины в один или несколько приемов в различных направлениях; в) протягивание трубопровода в разрабатываемую скважину.

 

Рис. 1.8 - Строительство подводных переходов траншейный методом и методом микротоннелированием

Данный метод позволяет обеспечить высокую надежность построенного объекта; сохранение природного ландшафта и экологического баланса в месте проведения работ, исключение техногенного воздействия на флору и фауну, размыва берегов и донных отложений водоемов; значительное уменьшение риска аварийных ситуаций и, как следствие, гарантию длительной сохранности трубопроводов в рабочем состоянии.

Применение ННБ имеет ряд ограничений: сложные инженерно-геологические условия, большая протяженность перехода и диаметр укладываемой трубы.

В России были построены единичные переходы протяженностью более 1000 м с диаметром труб не более 1020 мм. Основная масса построенных переходов диаметром труб 1020-1420 мм имеет протяженность не более 500-700 м. Другим ограничением метода ННБ являются сложные геологические условия: галечниковые грунты, грунты с включением валунов, карстовых полостей, скальные, илистые грунты. Эти факторы в совокупности с конструктивными параметрами буровых установок и технологии бурения определяют возможность или невозможность строительства того или иного объекта методом ННБ.

Метод микротоннелирования (рис. 1.8) основан на строительстве тоннеля с помощью дистанционного управляемого проходческого щита. Микротоннельный щит работает из заранее подготовленной стартовой шахты в прямолинейном или криволинейном направлении. Выемка щита производится из приемной шахты.

Преимуществами микротоннелирования (так же как и метода ННБ) является отсутствие отрицательного воздействия на русловые процессы пересекаемой водной преграды; надежная защита руслового участка подводных переходов трубопровода от размыва и высокая степень защиты трубопровода от механических повреждений, обеспечиваемая прокладкой трубопровода на глубине не менее 7 м от дна и значительно ниже линии предельного размыва русла реки; сохранение экологического баланса в месте проведения работ; отсутствие воздействия на режим судоходства и пр.

Однако микротоннелирование имеет следующие сложности при проходке: а) в трещиноватых доломитах есть большой риск заклинивания трубного става, в связи с относительно высокой прочностью породы и опасностью возникновения неравномерного горного давления;

б) на границе перехода из прочных пород в зону карстового образования при малейшем отклонении щита от заданной траектории резко возрастают усилия продавливания всего трубного става (заклинивание), при превышении которых будет происходить разрушение секций трубного става;

в) при преодолении карстовых участков возникает большая степень риска отклонения трубного става от проектной траектории прокладки микротоннеля, что повлечет за собой изменение проектного положения и расчетной схемы трубопровода; г) стандартная конструкция труб не предусматривает связи растяжения в стыках, поэтому заклинивание может привести к раскрытию стыка и прорыва грунта в микротоннель при проходке в слабых грунтах.

При сооружении подводных переходов тоннельным методом используют щитовую проходку защитного кожуха-обделки, состоящего из отдельных колец, которые, в свою очередь, собираются из блоков - сегментов (или тюбингов) под защитой проходческого щита. Для продвижения проходческого комплекса в конструкции щита предусматриваются щитовые домкраты, которые отталкиваются от каждого вновь собранного кольца обделки, тем самым разрабатывая грунт и освобождая место для монтажа следующего кольца обделки. При проходке тоннеля производится первичное и контрольное нагнетание, в результате которого заполняются возможные трещины и пустоты вокруг обделки тоннеля.

Преимущества тоннельного метода прокладки схожи с преимуществами метода микротоннелирования, но при сравнении этих двух методов оказывается, что у первого отсутствуют недостатки, присущие методу микротоннелирования. Тем не менее негативное воздействие на подводный переход окружающего грунта, изменение инженерно-геологических условий, к примеру, образование или развитие карстовых полостей, может нарушить целостность сооружения и привести к серьезным экологическим последствиям. Во избежание возможных негативных последствий требуется разработка специальных мероприятий и технических решений, предотвращающих аварийные ситуации при строительстве и способствующих нормальной эксплуатации сооружения и сохранению окружающей среды.

Целесообразность применения того или иного метода строительства подводных переходов определяется с учетом анализа всех возможных факторов, существенно влияющих на надежность и безопасность трубопровода. Причем в рамках одного проекта строительства могут применяться практически все методы прокладки подводных переходов трубопровода.

Информация о работе Обеспечение надежности при строительстве и эксплуатации подводных переходов трубопроводов через водные преграды