Инженерные сети

Автор работы: Пользователь скрыл имя, 22 Апреля 2014 в 20:23, лекция

Краткое описание

Основы гидростатики, основы гидродинамики, водоснабжение поселений, водоснабжение зданий, канализация и санитарная очистка поселений, тепло и газоснабжение территорий поселений и зданий, отопление и вентиляция зданий, газоснабжение, электроснабжение объектов, конструктивное выполнение электрических сетей, устройство осветительных и силовых сетей общественных, жилых зданий и предприятий.

Вложенные файлы: 1 файл

Инженерные сети.docx

— 619.30 Кб (Скачать файл)

Если в нескольких точках потока, взятых на определенном расстоянии друг от друга, провести векторы, показывающие значение и направление скоростей движения частиц жидкости в данный момент времени, то образуется ломаная линия. Если уменьшить длину отрезков, в пределе ломаная линия станет кривой. Эта кривая, называемая линией тока, характеризуется тем, что в данный момент времени во всех ее точках векторы скоростей будут касательными к ней.

Если в движущейся жидкости выделить бесконечно малый замкнутый контур и через все его точки провести линии тока, соответствующие в данному моменту времени, получится как бы трубчатая непроницаемая поверхность, называемая трубкой тока. Жидкость, движущаяся внутри трубки тока, образует элементарную струйку.

Совокупность элементарных струек, представляющая собой непрерывную массу частиц, движущихся по какому-либо направлению, образует поток жидкости. Поток может быть полностью ли частично ограничен твердыми стенками, например в трубопроводе или канале, и может быть свободным, например струя, выходящая из сопла гидромонитора.

3.2. Равномерное и неравномерное  движение

Живым сечением потока называют поперечное сечение потока, перпендикулярное его направлению.

Расходом потока Q называют объем жидкости, проходящей в единицу времени через живое сечение потока. Расход жидкости измеряют в м3/с или л/с. Иногда пользуются понятием весового расхода G, под которым подразумевают вес жидкости, проходящей в единицу времени через сечение потока. Между весовым и объемным расходами существует такая зависимость:

G=yQ

где у — удельный вес жидкости.

Равномерным называют такое установившееся движение жидкости, при котором живые сечения в средняя скорость потока не меняются по его длине. Примером равномерного движения служит движение жидкости в цилиндрической трубе или канале не в неизмененного сечения и постоянной глубины.

Неравномерным называют такое установившееся движение жидкости, при котором живые сечения и средние скорости потока изменяются по его длине. Примером неравномерного движения служит движение жидкости в конической трубе, в естественном русле, на перепаде.

При равномерном движении линии тока представляют собой систему прямых параллельных линий. Такое движение называется параллельноструйным. При движении жидкости в естественных руслах живое сечение обычно непрерывно изменяется вдоль потока по форме, так и по площади. Такое движение жидкости является установившимся неравномерным. Для облегчения изучения такого движения в гидравлике введено понятие плавно изменяющегося движения, которое характеризуется следующими свойствами:

кривизна линий тока в потоке считается весьма незначительной; угол расхождения между отдельными линиями тока очень мал; живые сечения потока являются плоскими; давление распределяется по живому сечению по гидростатическому закону.

3.3. Режимы движения жидкостей

В 1880 г. д. И. Менделеевым было высказано предположение о существовании двух отличающихся друг от друга режимов течения. В 1883 г. О. Рейнольдс экспериментально изучил эти режимы. Опыты показали, что при невысоких скоростях наблюдается ламинарное (слоистое) течение без перемешивания частиц и пульсаций скорости. Причем при течении отсутствует поперечное перемещение жидкости, ее частицы перемещаются почти по параллельным траекториям. При постоянном перепаде давления течение стационарно (не зависит от времени).

При значительных скоростях наблюдается течение, в котором частицы жидкости перемещаются по достаточно сложным траекториям. Скорости движения меняются по величине и направлению, поэтому в потоке возникают вихри. Слои жидкости перемешиваются а отдельные частицы совершают неупорядоченное хаотическое движение по сложным траекториям. Такое течение называется турбулентным. Если в турбулентном потоке пустить по течению капельку красителя, то окрашивается все сечение потока.

О. Рейнольдсом было установлено, что ламинарный режим течения происходит при малых скоростях течения, поперечных размерах потока, плотностях и больших коэффициентах шероховатости. Турбулентные режимы течения характеризуются большой скоростью, большим поперечным размером и малой вязкостью текущей среды. Рейнольдсом было введено число, названное впоследствии числом Рейнольдса (Rе). Оно пропорционально отношению силы инерции к вязкости. В ходе испытаний было установлено, что в трубах круглого сечения напорных трубопроводов переход ламинарного течения в турбулентное происходит приблизительно при значении Rе = 2300. При числах Rе, меньших 2300, течение обычно бывает ламинарным, а при числах Rе, больших 2300, — турбулентным. Критическое число Рейнольдса зависит от формы поперечного сечения канала. Для безнапорного течения в открытом русле Rе = 900.

Примером турбулентного течения может служить процесс вытекания газообразных продуктов сгорания из трубы котельной или печной трубы.

Пример ламинарного течения — это истечение воды из крана умывальника, если открыть очень малую струйку воды. Большинство течений, окружающих нас в природе, турбулентные. Ламинарные течения встречаются только в очень узких каналах, какими являются капилляры кровеносных сосудов человека, или при течении жидкостей с большой вязкостью (например, мазута) в трубопроводах.

Ньютон в 1686 г. сформулировал закон вычисления касательной силы трения, действующей на единицу площади жидкости или стенки твердого тела, находящегося в жидкости, который был экспериментально доказан в 1883 г. профессором Н. П. Петровым. С его помощью можно определить, при каком значении коэффициента вязкостиI произойдет переход ламинарного течения в турбулентное.

Для воды коэффициент вязкости в системе СИ при температуре 20 °С равен 10-6 м2/с.

В протяженных трубопроводах становятся существенными потери напора за счет трения жидкости о стенку трубы, приводящие к превращению части механической энергии в теплоту. Эта часть потерь напора называется потерями напора по длине трубы. К потерям напора приводят также повороты, резкие сужения, расширения и другие изменения геометрии трубы, способствующие вихреобразованию. Эти препятствия потоку называются местными сопротивлениями. Значения коэффициентов местного со противления приведены в справочной литературе.

3.4. Истечение жидкости  из отверстий через водосливы. Гидравлический удар в трубопроводах

Истечение жидкости из отверстий. Струя, вытекающая из отверстия, преодолевает местные сопротивления. При вытекании струи через отверстие, имеющееся в вертикальной стенке емкости, на некотором расстоянии от него происходит сжатие ее попе речного сечения. По характеру сжатие бывает полным, если струя сжата по всему периметру отверстия, и неполным, если струя не имеет бокового сжатия с одной или нескольких сторон, например если отверстие примыкает к стенке или ко дну сосуда, которые при этом являются направляющими для вытекающей струи.

Полное сжатие будет совершенным, если отверстие расположено на значительном расстоянии от боковых стенок и дна сосуда (они не оказывают влияния на сжатие струи), и несовершенным, если на него оказывают влияние стенки или дно сосуда.

Насадком называют короткую трубу, присоединенную к отверстию в тонкой стенке. длина насадка равна трем—пяти диаметрам отверстия. По форме насадок может быть внешним цилиндрическим, внутренним цилиндрическим, коническим сходящимся, коническим расходящимся и коноидальным.

Водосливом называют сооружение (стенку), через которое происходит перелив жидкости. По форме выреза в стенке водосливы бывают прямоугольными, трапецеидальными, треугольными, круглыми, параболическими и т. д.

По условиям бокового сжатия потока различают водосливы без бокового сжатия, когда ширина русла равна ширине водослива, и водосливы с боковым сжатием — ширина русла больше ширины водослива. При проектировании водослива рассчитывают объемный расход жидкости, через водослив, который определяется как объем жидкости, истекающей из прямоугольного отверстия.

Гидравлический удар в трубопроводах. Называя жидкость несжимаемой или капельной, имеют в виду малую ее сжимаемость по сравнению с газами. При изменении давления на 0,1 МПа объем жидкости изменяется всего на сотые доли процента. Есть, однако, процессы, при которых и эти изменения объема существенны и им нельзя пренебрегать. К их числу относится большая группа динамических процессов, связанных с распространением волн давления в трубопроводах, в частности явление гидравлического удара.

В напорном трубопроводе при внезапном изменении скорости движения жидкости, мгновенной остановке или появлении движения возникает гидравлический удар, сопровождающийся резким повышением и понижением давления. Например, при мгновенной остановке движения жидкости, когда кинетическая энергия переходит в работу сил давления, т. е. жидкость оказывается сжатой, в трубопроводе возникает удар непосредственно у крана. Ударная волна распространяется по жидкости с постепенным затуханием колебаний.

Возникающее добавочное давление внутри трубопровода может привести к разрыву стыковых соединений, арматуры, стенки трубопровода. Если трубопровод перекрыт с обеих сторон, то наблюдается постепенное затухание ударной волны. При наличии свободной поверхности (бака) волна затухает сразу.

На явлении гидравлического удара основано действие некоторых механизмов, например гидравлического тарана, поднимающего воду в горных местностях.

4.ВОДОСНАБЖЕНИЕ ПОСЕЛЕНИЙ

4.1. Источники водоснабжения

Водоснабжение населенных пунктов осуществляют из подземных и поверхностных источников. Подземные воды могут быть безнапорными и напорными (артезианскими).

Безнапорные воды заполняют водоносные горизонты не полностью и имеют свободную поверхность. Водоносные горизонты, расположенные непосредственно у поверхности земли или в уровне соседних водоемов, называют грунтовыми. Они характеризуются повышенной загрязненностью и должны очищаться при использовании их для целей водоснабжения.

Напорные воды заполняют водоносные горизонты полностью. Примером может служить вода в водоносном горизонте, расположенном ниже близлежащих водоемов или их питающих. Артезианские воды, как правило, характеризуются высоким качеством и в большинстве случаев могут использоваться для хозяйственно-питьевых целей без очистки.

В колодце, вскрывающем напорный водоносный горизонт, вода поднимается до пьезометрической линии, т. е. уровня поверхности воды близлежащего водоема (рис. 8.1). Если пьезометрическая линия проходит выше поверхности земли, то наблюдается излив воды из колодца. Такие колодцы называют самоизливающимися (артезианскими).

Уровень воды, устанавливающийся в колодце при отсутствии водозабора, называют статическим. Статический уровень безнапорных вод совпадает с уровнем подземных вод, а напорных вод — с пьезометрической линией. При откачке воды из колодца уровень ее снижается тем больше, чем интенсивнее откачка. Такой уровень называют динамическим.

Уровни воды и пьезометрические линии, устанавливающиеся вокруг колодцев при откачке из них воды (в поперечном разрезе они имеют выпуклую форму), называюткривыми депрессии. Область, ограниченную кривыми депрессии, называют депрессионной воронкой.

Рис. 8.1. Схема образования и залегания подземных вод:

1-водоупорные породы: 2— водоносные  породы: К — колодцы; И - источники (родники)

Безнапорные и напорные воды могут выходить на дневную поверхность (родники). Выход безнапорных вод называют нисходящим ключом, а выход напорных вод — восходящим ключом. Ключевая вода отличается высоким качеством и также может использоваться для целей водоснабжения без очистки.

К поверхностным источникам водоснабжения относятся реки, водохранилища и озера. Для промышленных целей может использоваться и морская вода. При отсутствии в приморских районах пресной воды морская вода после опреснения может использоваться для хозяйственно-питьевых целей. Однако это должно быть обосновано технико-экономическими соображениями.

Воду из поверхностных источников рекомендуется использовать для водоснабжения при недостаточно дебите или непригодности подземных вод. Перед использованием для хозяйственно-питьевого водоснабжения воду из поверхностных источников обычно очищают, а перед использованием для водоснабжения некоторых производств, не нуждающихся в высоком качестве воды, ее подвергают только простейшей очистке либо вообще не очищают.

При выборе источника водоснабжения следует учитывать качество воды в нем и его мощность, требования, предъявляемые к качеству воды потребителями, технико-экономические соображен и другие факторы. Для хозяйственно-питьевого водоснабжения наиболее более пригодны подземные воды, так как они обладают сравнительно высоким качеством и часто не нуждаются в очистке.

4.2. Водозаборные сооружения  из подземных источников

Выбор типа сооружения для приема подземных вод зависит от глубины их залегания и мощности водоносного горизонта. Сооружения для приема подземных вод могут быть подразделены на четыре вида: водозаборные скважины; шахтные колодцы; горизонтальные водозаборы; каптажные камеры.

Водозаборные скважины (трубчатые колодцы) служат для приема безнапорных и напорных подземных вод, залегающих на глубине более 10 м. Это наиболее распространенный вид водозаборных сооружений для систем водоснабжения городов, сельских населенных пунктов и промышленных предприятий. Их устраивают путем бурения в земле скважин, стенки которых крепят обсадными стальными трубами. По мере заглубления скважины диаметр обсадных труб уменьшают. В результате скважина приобретает телескопическую форму. Зазоры между отдельными обсадными трубами за (тампонируют) цементным раствором. В скальных грунтах стенки скважин обсадными трубами не крепят. Над верхом скважины устраивают кирпичную, бетонную или железо бетонную камеру. В нижней части скважины устанавливают фильтр.

Водозаборные скважины размещают перпендикулярно направлению потока подземных вод. Их количество зависит от требуемого расхода и мощности водоносного горизонта. В зависимости от глубины залегания динамического уровня воды, она либо сам изливается из скважин в сборные резервуары, либо (при глубоком залегании) ее выкачивают насосами.

Информация о работе Инженерные сети