Нанотехнологии

Автор работы: Пользователь скрыл имя, 07 Мая 2014 в 00:02, курсовая работа

Краткое описание

Нанотехнологии уже так или иначе затрагивают нашу жизнь. Нанопродукты можно обнаружить в автомобилях и в краске на стенах домов. По прогнозам отраслевой ассоциации NanoBusiness Alliance, к 2010 году мировой рынок нанопродуктов и услуг вырастет до 1 трлн. долларов.
Одна из причин трудного "характера" нанотехнологии заключается в том, что ее сфера - непостижимо малые по своим масштабам элементы. Нанометр - единица измерения, которая дала название нанотехнологии, - составляет одну миллиардную часть метра. Атом водорода, наименьший из существующих в природе, имеет диаметр около 1/10 нм; диаметр человеческого волоса - около 75 тыс. нм.

Содержание

• Введение
o 1. Возникновение и развитие нанонауки
o 2. Виды искусственных наноструктур
o 3. Некоторые свойства наноструктур
o 4. Получение искусственных наноматериалов
o 5. Прикладная нанотехнология
o 6. Будущее нанотехнологий: проблемы и перспективы
o Выводы
o Литература

Вложенные файлы: 1 файл

15.docx

— 53.78 Кб (Скачать файл)

Рис. 10. Так под микроскопом выглядят нанотрбки, полученные химическим осаждением из пара

Надо сказать, что метод получения наноструктур играет очень важную роль. Он влияет не только на свойства наноструктуры, но и на время ее жизни - период, в течение которого частица способна эти уникальные свойства проявлять. По истечении этого срока наночастицы либо окисляются, либо агрегируются в микрочастицы и приобретают свойства компактных веществ.

5. Прикладная  нанотехнология

1. Наноэлектроника.

Уже в начале нашего века появились серьезные преграды на пути развития электроники. Прежде всего это касается роста степени интеграции и быстродействия интегральных схем. Технология приближается к фундаментальным пределам, определяемым самой природой. Ведущие производители схем уверенно осваивают технологию 90 нм. Казалось бы, еще немного, и будет технология в 50 нм, но… в силу вступают квантовые законы и эффекты. Например, пробел между проводящими дорожками шириной 50 нм будет насквозь "простреливаться" в поперечном направлении электронами за счет туннельного эффекта (о чем говорилось выше). Другие проблемы - отвод тепла, выделяемого элементами схем, сверхплотно расположенными в микрообъеме кристалла, а также уровень собственных шумов, равный полезному сигналу или превышающий его.

В обычных условиях на перестройку всей концепции создания процессоров и микросхем ушло бы лет 50. Однако у человечества нет такого запаса времени. Необходимость скорейшего перехода на новые концепции схемотехники обусловлена тем, что создать что-то принципиально новое на имеющейся технологической базе практически невозможно.

Известно, что все многослойные нанотрубки - полупроводники. В официальном сообщении Международной ассоциации производителей полупроводников говорится о начале перехода к посткремниевой эре в схемотехнике. В ближайшие 10-15 лет может начаться массовый переход с кремния на углеродные нанотрубки. Например, известный производитель жестких магнитных дисков, компания Seagate, запатентовала технологию повышения плотности записи при помощи нанотрубок в качестве смазочного материала. Дело в том, что плотность записи можно повысить путем сокращения зазора между считывающе-записывающими головками и самой магнитной поверхностью-носителем. Компания предлагает ввести головки практически в полный контакт с магнитной поверхностью, например диском, разделив их тончайшим слоем смазочного материала на основе нанотрубок. Специальный лазер будет подогревать часть пластины, где работает считывающая головка, что позволит повысить точность ориентации магнитных частиц. Предполагается, что таким образом можно будет создавать достаточно компактные и недорогие накопители информации емкостью несколько тысяч терабайт.

Другое направление работ в области создания электронной наноразмерной компонентной базы - исследования, проводимые в международном томографическом центре Новосибирского отделения РАН. Российскими учеными созданы необычные ферромагнетики, которые содержат атомы углерода, азота и водорода, а также атомы меди и классические "магнитные элементы" - железо, кобальт и никель. Эти ферромагнетики не требуют изоляции, очень легки и, что самое главное, прозрачны, то есть могут быть использованы для голографической записи информации на всей глубине кристалла, тогда как обыкновенные компакт-диски накапливают информацию только на поверхности. Применение подобных ферромагнетиков может значительно повысить объем хранимой информации в единице объема носителя.

В апреле 2007 года в США поступили в продажу компьютеры с емкостью жесткого диска 1 Тб (1012 байт). На нем можно разместить информацию, равнозначную 50 млрд печатных страниц, около 16 суток видеоматериала в формате DVD, миллион фотографий в высоком разрешении или около 250 тыс. музыкальных файлов (от полутора до двух лет беспрерывного прослушивания).

2. Нанотехнологии  в строительстве.

Одна из отраслей промышленности, где нанотехнологии развиваются достаточно интенсивно, - это строительство. Естественно, что основные разработки в этой области должны быть направлены на создание новых, более прочных, легких и дешевых строительных материалов, а также улучшение уже имеющихся материалов: металлоконструкций и бетона за счет их легирования нанопорошками.

Определенные успехи в этой области уже достигнуты. Так, российские ученые из Санкт-Петербурга, Москвы и Новочеркасска создали нанобетон. Специальные добавки - так называемые наноинициаторы - значительно улучшают его механические свойства. Предел прочности нанобетона в 1,5 раза выше прочности обычного, морозостойкость выше на 50%, а вероятность появления трещин - в три раза ниже. При этом вес бетонных конструкций, изготовленных с применением наноматериалов, снижается в 6 раз. Разработчики утверждают, что применение подобного бетона удешевляет конечную стоимость конструкций в 2-3 раза.

Также отмечается и ряд восстанавливающих свойств бетона. При нанесении на железобетонную конструкцию нанобетон заполняет все микропоры и микротрещины и полимеризуется, восстанавливая ее прочность. Если же проржавела арматура, новое вещество вступает в реакцию с коррозийным слоем, замещает его и восстанавливает сцепление бетона с арматурой.

Другой аналогичный пример приводит "Росбалт" от 16.01.08 в публикации "Горьковская железная дорога испытывает новинки наноиндустрии", где указывается следующее: "Одной из интересных разработок, которые предлагает железнодорожникам Нижегородский региональный центр наноиндустрии, является керамический наноцемент - это порошкообразная смесь фосфата и оксида металла, при соединении с водой образующая пастообразный цементный раствор. Такой материал обладает высокой прочностью и огнестойкостью, устойчивым сопротивлением химическому разложению и замерзанию. В отличие от традиционного бетона, он отвердевает даже под водой, а по своим свойствам превосходит привычный цемент".

Другое направление практического применения нанотехнологии в строительстве - различного рода отделочные и защитные покрытия. Например, добавление наноструктур в фасадные краски обеспечивает высокую прочность и стойкость покрытия к внешним воздействиям. При этом грязь на окрашенной поверхности распадается благодаря воздействию света. Сочетание наноструктуры и светостойких пигментов обеспечивает как высокую насыщенность цвета, так и устойчивость покрытия к УФ излучению, что позволяет фасаду зданий и сооружений долгое время сохранять первозданный внешний вид.

Один из примеров использования нанотехнологии - разработка новых окрашивающих материалов для поездов, которая призвана защитить поверхность вагонов от рисования и нанесения надписей, делая ее настолько гладкой, что никакие другие краски не могут на ней закрепиться.

3. Нанотехнологии  и медицина.

Рис. 11. Обыкновенное наночудо - мыльные пузыри

Самый яркий и простой пример использования нанотехнологии в медицине и косметике - обыкновенный мыльный раствор, обладающий моющим и дезинфицирующим действием. Мыло - чудо нанотехнологии, уже бывшее таковым, когда никто и не подозревал о существовании наночастиц (рис.11). Однако этот наноматериал не является главным для развития современных нанотехнологий в здравоохранении и косметологии.

Другим древнейшим применением нанотехнологии в косметологии оказался тот факт, что красящие вещества, использовавшиеся аборигенами Австралии для нанесения ярких боевых раскрасок, также содержали наночастицы, обеспечивающие очень длительный и стойкий окрашивающий эффект.

Наверное, уже многие встречали в открытой продаже так называемую шунгитовую воду, производители которой уверяют в ее уникальных оздоровительных свойствах, якобы полученных в результате воздействия на нее природных фуллеренов. Особенностью ее является тот факт, что такую воду нельзя долго хранить - через несколько часов она теряет свои уникальные свойства.

Проведенные на Украине и в Карелии исследования показали, что эта вода является следствием воздействия на нее фуллеренов, содержащихся в природном минерале - шунгите. Ученые считают, что происхождение шунгита, скорее всего, явилось следствием падения большого углеродного метеорита. Каждая молекула фуллерена способна формировать и удерживать вокруг себя водный кластер, размеры которого во много раз больше его собственного диаметра. Это связано с тем, что в обычной воде состояние и количество образующихся кластеров является нестабильным (мерцающим). Кластеры существуют миллиардные доли секунды (наносекунды) и распадаются, а затем образуются вновь, то есть мерцают.

Эти водные кластеры способны оказывать антиоксидантное действие, т.е. улавливать свободные радикалы, являющиеся "обломками различных органических соединений" и разрушающие живой организм.

Встающие перед человечеством глобальные проблемы требуют незамедлительных действий. В решении многих из них нанотехнологии могут оказать значительную помощь. Так, за последние 20 лет было выявлено не менее 30 инфекционных заболеваний (СПИД, "птичий грипп"), смертность от которых составляет 30% общего числа смертей во всем мире. Ежегодно только в США диагностируется 1,5 млн новых случаев онкологических заболеваний. Смертность от них в мире составляет не менее 500 тыс. человек в год. Согласно прогнозам, к 2020 году количество онкобольных в мире может возрасти на 50% и составить 15 млн человек в год.

Директор Лаборатории нанофотоники, профессор Университета Раиса в Хьюстоне, Наоми Халас и Питер Нордлендер создали новый класс наночастиц с уникальными оптическими свойствами - наногильзы. Имея диаметр в 20 раз меньший, чем у красных кровяных телец (эритроцитов), они свободно перемещаются по кровеносной системе. К поверхности гильз особым образом прикрепляется специальные белки - антитела, поражающие раковые клетки. Через несколько часов после их введения организм облучают инфракрасным светом, который наногильзы преобразуют в тепловую энергию. Эта энергия и разрушает раковые клетки, причем соседние здоровые клетки при этом практически не повреждаются.

Такая уникальная нанотехнология уже успешно протестирована на подопытных мышах с раковыми опухолями. Уже через 10 дней после облучения все больные животные полностью избавились от недуга. Причем, как отмечается, последующие анализы не выявили у них никаких очагов новых злокачественных образований.

Следует отметить, что направление медицинских нанотехнологических исследований также развивается стремительными темпами. При этом уже сейчас полученные на подопытных животных результаты обещают значительные перспективы в лечении людей.

4. Военные нанотехнологии.

Пожалуй, самым первым фактом применения нанотехнологии в военных целях следует считать факт, открытый учеными Дрезденского технического университета при исследовании образца дамасской стали (известной своей высочайшей прочностью), из которой в XVI веке была изготовлена сабля, хранящаяся в Историческом музее г. Берна. После травления поверхности образца металла в соляной кислоте исследователи обнаружили нитеобразные объекты нанометровых поперечных размеров (рис.12).

Рис. 12. Наноструктура дамасской стали и конструкционного материала ApNano

При детальном изучении поверхности с использованием сканирующего туннельного микроскопа оказалось, что это многослойные углеродные нанотрубки, к тому же заполненные внутри цементитом - карбидом железа Fe3C, обладающим очень высокой твердостью.

Поскольку нанотрубки обладают рекордной прочностью на растяжение (модуль упругости приблизительно равен 1012 ТПа), не приходится удивляться тому, что входящие в состав дамасской стали углеродные нанотрубки обеспечивают материалу сабли столь высокие прочностные свойства.

Создание различного рода защитных средств - одно из направлений военных исследований в области нанотехнологий. Так, израильская компания ApNano Materials недавно испытала один из наиболее стойких к удару материалов, известных человечеству (см. рис.12). Образец материала ApNano, разработанный на основе дисульфида вольфрама, подвергался ударам, которые производились стальным снарядом, выпущенным со скоростью до 1,5 км/с. Исследуемый материал выдержал удар с воздействиями до 250 т/см2, а также статическую нагрузку 350 т/см2, что приблизительно соответствует нагрузке, развиваемой четырьмя локомотивами на область размером с человеческий ноготь.

Такой материал может понадобиться для изготовления шлемов и бронежилетов, а также обшивки военного транспорта. На 11-й Международной выставке средств обеспечения безопасности государства "Интерполитех-2007" Научно-исследовательский институт стали (Москва) и Институт прикладных нанотехнологии (Зеленоград) продемонстрировали первые опытные отечественные образцы "жидкой" брони, которая в перспективе может применяться для бронежилетов и других средств индивидуальной защиты. Ее создание заключается в обработке обычной баллистической ткани гелевой композицией на основе фтора с наночастицами оксида корунда. Обработанная ткань внешне не отличается от аналога, но при ударном воздействии на нее пули или осколка находящийся внутри гель мгновенно затвердевает (см. рис.13), препятствуя разрушению ткани и снижая поражающее воздействие. Российскими специалистами исследовалась эффективность защитных свойств опытного образца ткани из "жидкой" брони и стандартного образца, изготовленного из 18 слоев баллистической ткани. Испытания проводились методом метания в них шариков массой 1,04 г и диаметром 6,3 мм (аналог пули) со скоростью 526 м/с. В результате испытаний было установлено, что "жидкая" броня обеспечивает лучшие защитные свойства, выдерживая нагрузку от шариков, летящих со скоростью до 560 м/с.

Рис. 13. Механизм образования гидрокластеров в полимерной наносистеме: 1) равновесное состояние; 2) невысокая деформация; 3) затвердение при ударном воздействии.

Другим изобретением, которое может быть в перспективе использовано для военных целей, является разработка так называемого плаща-невидимки. Как видим, некоторые фантастические сюжеты русских народных сказок о шапках невидимках и коврах-самолетах начинают сбываться.

Основная задача, стоящая перед разработчиками данного маскирующего устройства, заключается в том, чтобы сделать объект невидимым за счет выполнения двух необходимых требований: свет не должен отражаться от объекта и должен полностью обходить объект. При этом необходимо, чтобы наблюдатель видел только задний фон, а не сам предмет, замаскированный устройством-невидимкой.

Информация о работе Нанотехнологии