Построение базы данных

Автор работы: Пользователь скрыл имя, 12 Мая 2012 в 19:48, курсовая работа

Краткое описание

В данной курсовой работе затронуты проблемы, возникающие при параллельной работе, т.е. при выполнении логических единиц работы -транзакций.
Кроме этого рассмотрены современные методы и подходы для исправления и избегания данных проблем.
В практической части (Глава 3 Построение базы данных) описывается создание базы данных на примере футбольных матчей (БД «Футбольные матчи»). Данная база была построена с нуля, и в ней отображены все шаги при строительстве БД, начиная от создания таблиц и кончая сложными многотабличными формами и макросами. Имеется подробная иллюстрация различных шагов при создании этой базы данных.

Содержание

Введение
2
Глава 1. Транзакции
4
1.1. Понятие и сущность транзакций
4
1.2. Двухфазная фиксация транзакций
8
Глава 2. Проблемы параллельности и их решение
12
2.1. Проблемы параллельности
12
2.2. Решение проблем параллельности
23
Глава 3. Построение базы данных
46
3.1. Разработка и создание таблиц

3.2. Создание форм

3.3. Проектирование запросов

3.4. Создание кнопочной формы

3.5. Работа с макросами

Заключение
55
Список литературы

Вложенные файлы: 1 файл

Копия Содержание.doc

— 760.50 Кб (Скачать файл)

Результат. Хотя транзакция B все сделала правильно - деньги переведены без потери, но в результате транзакция A подсчитала неверную общую сумму. Т.к. транзакции по переводу денег идут обычно непрерывно, то в данной ситуации следует ожидать, что главный бухгалтер никогда не узнает, сколько же денег в банке.

Конфликты между транзакциями. Итак, анализ проблем параллелизма показывает, что если не предпринимать специальных мер, то при работе в смеси нарушается свойство транзакций как изолированность. Транзакции реально мешают друг другу получать правильные результаты.

Однако не всякие транзакции мешают друг другу. Очевидно, что транзакции не мешают друг другу, если они обращаются к разным данным или выполняются в разное время.

Транзакции называются конкурирующими, если они пересекаются по времени и обращаются к одним и тем же данным.

В результате конкуренции за данными между транзакциями возникают конфликты доступа к данным. Различают следующие виды конфликтов[4]:

      W-W (Запись - Запись). Первая транзакция изменила объект и не закончилась. Вторая транзакция пытается изменить этот объект. Результат - потеря обновления.

      R-W (Чтение - Запись). Первая транзакция прочитала объект и не закончилась. Вторая транзакция пытается изменить этот объект. Результат - несовместимый анализ (неповторяемое считывание).

      W-R (Запись - Чтение). Первая транзакция изменила объект и не закончилась. Вторая транзакция пытается прочитать этот объект. Результат - чтение "грязных" данных.

      Конфликты типа R-R (Чтение - Чтение) отсутствуют, т.к. данные при чтении не изменяются.

Другие проблемы параллелизма (фантомы и собственно несовместимый анализ) являются более сложными, т.к. принципиальное отличие их в том, что они не могут возникать при работе с одним объектом. Для возникновения этих проблем требуется, чтобы транзакции работали с целыми наборами данных.

График запуска набора транзакций называется последовательным, если транзакции выполняются строго по очереди, т.е. элементарные операции транзакций не чередуются друг с другом.

Если график запуска набора транзакций содержит чередующиеся элементарные операции транзакций, то такой график называется чередующимся.

При выполнении последовательного графика гарантируется, что транзакции выполняются правильно, т.е. при последовательном графике транзакции не "чувствуют" присутствия друг друга.

Два графика называются эквивалентными, если при их выполнении будет получен один и тот же результат, независимо от начального состояния базы данных.

График запуска транзакции называется верным (сериализуемым), если он эквивалентен какому-либо последовательному графику.

Замечание. При выполнении двух различных последовательных (а, следовательно, верных) графиков, содержащих один и тот же набор транзакций, могут быть получены различные результаты. Действительно, пусть транзакция A заключается в действии "Сложить X с 1", а транзакция B - "Удвоить X". Тогда последовательный график {A, B} даст результат 2(X+1), а последовательный график {B, A} даст результат 2X+1. Таким образом, может существовать несколько верных графиков запусков транзакций, приводящих к разным результатам при одном и том же начальном состоянии базы данных[5].

Задача обеспечения изолированной работы пользователей не сводится просто к нахождению правильных (сериальных) графиков запусков транзакций. Если бы этого было достаточно, то лучшим был бы простейший способ сериализации - ставить транзакции в общую очередь по мере их поступления и выполнять строго последовательно. Таким способом автоматически будет получен правильный (сериальный) график. Проблема в том, что этот график будет неоптимальным с точки зрения общей производительности системы. Получается ситуация, в которой борются противоположные силы - с одной стороны, стремление обеспечить сериальность за счет ухудшения общей эффективности работы, с другой стороны, стремление улучшить общую эффективность за счет ухудшения сериальности.

Один крайний случай (выполнение транзакций по очереди) мы рассмотрели. Рассмотрим другой крайний случай - попытаемся достичь оптимального графика - т.е. графика с максимальной эффективностью выполнения транзакций. Для этого сначала нужно уточнить понятие "оптимальность". С каждым возможным графиком запуска транзакций мы можем связать значение некоей стоимостной функции. В качестве стоимостной функции можно взять, например, суммарное время выполнения всех транзакций в наборе. Время выполнения одной транзакции считается от момента, когда транзакция возникла и до момента, когда транзакция выполнила свою последнюю элементарную операцию. Это время складывается из следующих компонентов:

Время ожидания начала транзакции - то время, которое проходит от момента, когда транзакция возникла до момента, когда началась реально выполняться ее первая элементарная операция.

Оптимальным будет график, дающий минимум стоимостной функции. Очевидно, оптимальность графика запуска зависит от выбора стоимостной функции, т.е. график, оптимальный с точки зрения одних критериев (например, с точки зрения приведенной функции стоимости) не будет оптимальным с точки зрения других критериев (например, с точки зрения достижения максимально быстрого начала выполнения каждой транзакции).

Рассмотрим следующую гипотетическую ситуацию. Предположим, что нам заранее на некоторый промежуток времени наперед известно, какие транзакции в какие моменты поступят, т.е. заранее известна вся будущая смесь транзакций и моменты поступления каждой транзакции:

Транзакция поступит в момент .

Транзакция поступит в момент .

Транзакция поступит в момент .

В этом случае, т.к. набор всех транзакций заранее известен, теоретически можно перебрать все возможные варианты графиков запусков (их конечное число, хотя и очень большое), и выбрать из них те графики, которые, во-первых, правильные, а во-вторых, оптимальны по выбранному критерию. В этом случае оптимальный график запуска транзакций достижим.

В реальной ситуации, однако, неизвестно не только какие транзакции будут поступать в какие моменты времени, но и неизвестна длительность периода времени, охватывающего набор транзакций. Реально, система может непрерывно работать несколько дней или месяцев и в этом случае набором транзакций будет набор всех транзакций за этот период. Необходимо, следовательно, чтобы система работала так, чтобы к любому моменту времени набор выполненных и выполняющихся в этот момент транзакций был бы правильным и не слишком далек от оптимального.

Т.к. транзакции не мешают друг другу, если они обращаются к разным данным или выполняются в разное время, то имеется два способа разрешить конкуренцию между поступающими в произвольные моменты транзакциями:

      Первый метод - "притормаживание" транзакций - реализуется путем использованием блокировок различных видов или метода временных меток.

      Второй метод - предоставление разных версий данных - реализуется путем использованием данных из журнала транзакций.

 

2.2.         Решение проблем параллельности

 

Блокировки – являются одним из распространенных методов решения параллельности. Основная идея блокировок заключается в том, что если для выполнения некоторой транзакции необходимо, чтобы некоторый объект не изменялся без ведома этой транзакции, то этот объект должен быть заблокирован, т.е. доступ к этому объекту со стороны других транзакций ограничивается на время выполнения транзакции, вызвавшей блокировку.

Различают два типа блокировок:

      Монопольные блокировки (X-блокировки, X-locks - eXclusive locks) - блокировки без взаимного доступа (блокировка записи).

      Разделяемые блокировки (S-блокировки, S-locks - Shared locks) - блокировки с взаимным доступом (блокировка чтения).

Правила взаимного доступа к заблокированным объектам можно представить в виде следующей матрицы совместимости блокировок. Если транзакция A наложила блокировку на некоторый объект, а транзакция B после этого пытается наложить блокировку на этот же объект, то успешность блокирования транзакцией B объекта описывается таблицей 4[6].

Таблица 4. Матрица совместимости S- и X-блокировок

 

Транзакция B пытается наложить блокировку:

Транзакция A наложила блокировку:

S-блокировку

X-блокировку

S-блокировку

Да

НЕТ (Конфликт R-W)

X-блокировку

НЕТ (Конфликт W-R)

НЕТ (Конфликт W-W)


Доступ к объектам базы данных на чтение и запись должен осуществляться в соответствии со следующим протоколом доступа к данным.

Прежде чем прочитать объект, транзакция должна наложить на этот объект S-блокировку. Прежде чем обновить объект, транзакция должна наложить на этот объект X-блокировку. Если транзакция уже заблокировала объект S-блокировкой (для чтения), то перед обновлением объекта S-блокировка должна быть заменена X-блокировкой.

Если блокировка объекта транзакцией B отвергается оттого, что объект уже заблокирован транзакцией A, то транзакция B переходит в состояние ожидания. Транзакция B будет находиться в состоянии ожидания до тех пор, пока транзакция A не снимет блокировку объекта. X-блокировки, наложенные транзакцией A, сохраняются до конца транзакции A.

Проблема потери результатов обновления. Две транзакции по очереди записывают некоторые данные в одну и ту же строку и фиксируют изменения.

Таблица 5 . Попытка решения проблемы результатов обновления с помощью S и X-блокировок.

Транзакция A

Время

Транзакция B

S-блокировка - успешна

---

Чтение

---

---

S-блокировка - успешна

---

Чтение

X-блокировка - отвергается

---

Ожидание…

X-блокировка - отвергается

Ожидание…

Ожидание…

Ожидание…

 

Ожидание…

Информация о работе Построение базы данных