Определение гранулометрического состава методом седиментации дисперсных систем

Автор работы: Пользователь скрыл имя, 13 Апреля 2014 в 09:31, дипломная работа

Краткое описание

Порошкообразные материалы применяются во многих отраслях промышленности. Многие свойства порошков в значительной степени зависят от дисперсности. Анализ дисперсного состава является обязательным методом контроля во всех технологических процессах, связанных с изготовлением и переработкой порошкообразных материалов. В связи с этим становится понятным большое значение анализа дисперсного состава порошков для науки, техники и технологии [1].

Содержание

ВВЕДЕНИЕ…………………………………………………………………………..7
1 ЛИТЕРАТУРНЫЙ ОБЗОР………………………………………………………...8
1.1 Методы определения гранулометрического состава материала…………..8
1.2 Методы расчета основных параметров дисперсных частиц в вязкой среде...…………………………………………………………………………………..12
1.3 Влияние механоактивации на геометрические параметры дисперсных
материалов……………………………………………………………………….15
1.4 Цели и задачи исследования………………………………………………..20
2 МЕТОДИЧЕСКАЯ ЧАСТЬ………………………………………………….......21
2.1 Оборудование для активации материалов и механосинтеза композиций.21
2.2 Современное оборудование, используемое для седиментационного
анализа материалов……………………………………………………………...23
3 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ……………………………………………..26
3.1 Разработка установки для исследования материалов……………………..26
3.2 Оборудование для фильтрации материалов и композиций………………28
3.3 Экспериментальные данные, полученные при исследовании материалов……………………………………………………………………...…………....30
3.4 Выводы……………………………………………………………………….45
4 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ РАБОТЫ………………………….46
4.1 Анализ условий проведения эксперимента………………………………..46
4.2 Характеристика помещения для проведения работы……………………..47
4.3 Мероприятия по защите от опасных и вредных факторов………………..47
4.4 Характеристика освещения…………………………………………………53
4.5 Расчет вытяжного шкафа……………………………………………………54
4.6 Охрана окружающей среды…………………………………………………54
4.7 Организация контроля за качеством природной среды…………………...60
5 ЭКОНОМИЧЕСКАЯ ЧАСТЬ……………………………………………………62
5.1 Расчет вероятностного сетевого графика…………………………………..62
5.2 Экономическое обоснование научно-исследовательской работы………120
5.3 Расчет технико-экономических показателей……………………………..122
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ………………………………...127

Вложенные файлы: 1 файл

ЮРЬЕВ ДИПЛОМ.docx

— 595.82 Кб (Скачать файл)

Пыль по ее происхождению подразделяют также на три основные группы: органическую (древесная, угольная, торфяная и т. п.), неорганическую – металлическую (стальная, медная, чугунная) и минеральную – (песчаная, известковая, цементная). Смешанная пыль содержит компоненты третьей и второй групп (например, пыль, получающаяся от точки инструментов). Кроме того, пыль также различается по ее физическим свойствам: твердости, растворимости, удельной массе, размерам и формам частиц, воспламеняемости и пр.

Вредное действие пыли может проявляться в виде механических повреждений  кожи, слизистой оболочки, дыхательных путей, глаз, легких, а также в виде токсического   (отравляющего)  и химического   воздействия. Длительное вдыхание пыли (цемента, гипса, электросварочного аэрозоля) вызывает у человека стойкие хронические заболевания   легких,   которые   носят название пневмокониозов. В зависимости от рода пыли пневмокониозы имеют различные виды: силикоз, силикатоз и антракоз (угольная и алюминиевая пыль и др.). Вредность пыли для организма зависит от количества ее в воздушной среде, размеров частиц, химического состава и степени растворимости. В организм   человека   проникают частицы пыли   главным   образом размером   не   более 2мкм. Попадая на кожу, пыль   проникает в сальные и потовые железы и нарушает терморегуляцию организма. Количество пыли измеряется ее массой, выраженной в миллиграммах на 1 м3 воздуха.

Средства защиты от пыли разделяются на общие (коллективные) и индивидуальные. К общим средствам защиты от пыли в первую очередь относятся механизация процессов дробления, помола, просеивания, транспортирования, выгрузки пылящих материалов, изменение в некоторых случаях технологического процесса, например замена процесса сухого шлифования камней и прочих деталей на мокрые, сухого дробления материалов на бегунах мокрым процессом, применение герметического оборудования, размещение и производство пылящих процессов в отдельных изолированных помещениях и устройство отсосов пыли от мест ее возникновения (например, устройство местной и общей вентиляции, устройство кожуха точильного инструмента и пылеприемника на пути пылевого потока). Хороший эффект дает поливка пыльных дорог смесью воды с 20 %-ным раствором хлорной извести, что снижает запыленность воздуха до 1,8–2,6 мг/м3.

Средства индивидуальной защиты от пыли — это применение непроницаемой противопылевой спецодежды, противогазов, пневмошлемов, пневмомасок, респираторов, защитных очков и т. п., а также соблюдение личной гигиены.

Требования безопасности при работе с технологическим оборудованием. Все детали, узлы и механизмы, доступные для случайного прикосновения, должны ограждаться сплошными или сетчатыми кожухами. Надежное ограждение не только обеспечивает безопасность оператора, но и позволяет увеличить скорость выполнения отдельных операций, повысить производительность труда. В нужных случаях ограждение может быть использовано для усиления конструкции машины, отсоса вредных газов или пыли от рабочих частей ее, смазки и других целей.

Ограждение должно быть достаточно долговечным, прочным, стойким по отношению к механическим воздействиям (износу, удару), коррозионно- и огнестойким, не затруднять выполнение рабочих операций. Ограждение ни в коем случае не должно иметь защемляющих щелей, режущих кромок, острых углов и т. п.

В конструкциях установок предусматриваются предохранительные тормозные устройства, фиксирующие узлы и механизмы и предупреждающие их самопроизвольное перемещение в результате случайного внешнего воздействия.

Управление установками осуществляется с помощью кнопочных станций выносного типа или кнопочных станций, установленных непосредственно на машинах. При монтаже кнопочных станций учитывают необходимость обеспечения хорошего обзора рабочей зоны. Конструкция кнопочной станции должна исключать возможность случайного пуска машины, аварийные и рабочие кнопки должны быть сдублированы.

Противопожарная профилактика. Во избежание пожара в цехе предусмотрены следующие меры: обтирочные материалы хранятся в плотно закрытых металлических ящиках в дали от нагревательных устройств, для пожаротушения в цехе имеются огнетушители ОХП - 10, ящики с песком, щиты с противопожарным инвентарем, гидранты с рукавом длиной 20 метров. Цех оснащен противопожарной сигнализацией.

Во избежание пожара в лаборатории предусматриваются следующие мероприятия:

  • Установки пожарных щитов с набором пожарного инвентаря;
  • Предусмотрены установки углекислотных огнетушителей, предназначенных для тушения различных материалов и установок до 1000В. ОУ-5, ОУ-8. Химический огнетушитель ОХП-10 установленных для тушения загораний твердых материалов. Здание оборудовано системой электропожарной сигнализацией (ЭПС), предназначенной для обнаружения начальной стадии пожара и сообщения о месте его возникновения.
  • В лаборатории предусмотрено проведение противопожарного инструктажа, который проводят в 2 этапа. Сначала первичный инструктаж на рабочем месте, который проводит инженер по охране труда, а затем повторный на рабочем месте, который проводит начальник лаборатории.
  • Обтирочные материалы находятся в металлических ящиках с плотно закрывающимися крышками. Использованная ветошь по окончанию смены убирается с рабочего участка.

 

4.4 Характеристика освещения

 

Организация рационального освещения производственных помещений, рабочих мест имеет большое значение для создания оптимальных условий труда. При достаточном освещении повышается производительность труда, снижается утомляемость и травматизм, обеспечивается психологический комфорт. При неудовлетворительном освещении работающий человек плохо видит и с трудом ориентируется в производственной обстановке. Успешное выполнение задания в этом случае требует дополнительных условий и большого зрительного напряжения.

Для освещения помещений используют естественный свет и свет от источников искусственного освещения

Естественное освещение в лаборатории регламентируется по нормам СНиП 23-05-95.

Нормированное значение коэффициента естественного освещения (еn) (КЕО) определяется по формуле:

en = ен · mn,

где, ен – табличное значение КЕО, определяемое в зависимости от точности зрительной работы и системы освещения, равное 0,5;

        m – коэффициент светового климата (для условий города Красноярска), равное 0,9.

Следовательно, коэффициент естественного освещения:

en = 0,5 · 0,9 = 0,45.

 

Расчетное значение КЕО (ер) при боковом освещении рассчитывают по формуле:

 

 

где So , Sn – площадь окон и пола, м2;

ηo – световая характеристика окна, равная 15;

τo – общий коэффициент светопропускания, равный 0,5;

r1 – коэффициент, учитывающий влияние отражающего света, при боковом освещении, равный 1,5-3,0;

Кз – коэффициент запаса, равный 1,3;

Кзд – коэффициент, учитывающий затенение окон противоположными зданиями, равный 1,4.

 

 

Находим необходимое количество окон:

 

S0= (ep · Sn · η0 · Кзд · Кз) / (100 · r1 · τ0),

S0 = (0,45 · 200 · 15 · 1,4 · 1,3) / (100 · 2 · 0,5)=24,57 м2·

 

Учитывая, что в лаборатории активно используется искусственное освещение, появляется необходимость в представлении его характеристики, которая приведена в таблице 4.2.

 

Таблица 4.2 – Характеристика искусственного освещения лаборатории

Наименование рабочего места

Разряд зрительных работ

Система освещения

Норматив, лк

Источник света

Лабораторный стол

VI

Общая

200

22 люминесцентных лампы мощностью 36 Вт; 10 натриевых ламп высокого давления мощностью 250 Вт


 

4.5 Расчет вытяжного шкафа

 

Так как в работе используется большое количество порошковых материалов, то все работы необходимо проводить в вытяжном шкафу.

Ниже приводится расчет вытяжного шкафа с механической вытяжкой.

Для удаления из шкафа избытков тепла или вредных примесей при механической вытяжке количество отводящего воздуха рассчитывают по формуле:

 

Lухм = F·V,

                                     

где F – площадь всасывающего сечения, м2, равный 1,5;

      V – скорость удаляемого воздуха, м/с, скорость принимается в зависимости от вида вредных выделений по графикам, для порошковых материалов составляет 0,2 м/с.

Тогда:

Lухм = 1,2 · 0,2 = 0,24 м3/с.

 

Высота вытяжного шкафа рассчитывается по формуле:

 

 

где ξих+вых – сумма всех сопротивлений прямой трубы на пути движения воздуха, равный 0,05;

d – диаметр прямой трубы, равный 0,5 м;

h – высота открытого проема воздуха, равная 0,5 м.

 

Следовательно, принимаем высоту вытяжного шкафа, равную Н = 1,6 м.

 

 

4.6 Охрана окружающей среды

 

Раздел охраны окружающей среды рассмотрим на основе «Графитовой фабрики», это предприятие специализируется на производстве графита в Красноярске, на нём внедрены установки по улавливанию и утилизации вредных веществ. Это значит, что еще до направления вредных веществ на очистку, они поступают в эти установки, улавливаются и возвращаются в процесс. Такая работа ведет к сокращению потребления реактивов, используемых в технологических процессах, а значит, и к сокращению вредных выбросов в окружающую среду.

С целью предотвращения загрязнения окружающей среды и обеспечения соответствующих требованиям санитарно-технических норм условий в производственных помещениях, на промплощадке и прилегающих к заводу жилых районах отходящие газы от технологического оборудования подвергаются очистке на газоочистных сооружениях, состоящих из 6-ти электрофильтров и 8 пенных аппаратов на аффинажном производстве и скрубберов.

Основные пыле-газоочистные сооружения осуществляют двух-ступенчатую очистку по семи ингредиентам: хлористому водороду, хлору, оксидам азота и углерода, диоксиду серы, аммиаку и хлористому аммонию.

Газы и пыль от источников их образования (реакционные аппараты, баки, фильтры, печи цехов аффинажного производства) под действием разрежения, создаваемого вентиляторами ВЦТ-20, транспортируются по газоходам, газовым тоннелям, электрофильтрам, пенным аппаратам и очищаются от примесей. Очищенный газ выбрасывается в атмосферу через вентиляционную трубу.

В газовых трактах под действием гравитации происходит очистка газа от пыли с размерами частиц 1-100 мкм, осаждающихся на поверхности тракта. В них осаждаются также частицы солей, образующихся вследствие реакции нейтрализации кислых газов (хлористый водород, хлор, оксиды азота и серы). Ввиду недостатка щелочных газов для полной нейтрализации с пульсационных колонн цеха очистки стоков в газовый тракт принудительно по отдельному газоходу подаются газы, содержащие избыточный аммиак, что повышает степень очистки газов за счет образования в газовом тракте хлористого аммония.

      Поскольку в газовых  трактах концентрация индивидуальных  примесей ниже пределов воспламенения и взрываемости и они разбавлены парами воды, при нейтрализации исключаются бурное взаимодействие и образование взрыво-пожароопасных веществ.

Очистка газов в электрофильтрах. В электрофильтры из газовых  трактов по газоотводящим патрубкам диаметром 1400 мм поступает газ, содержащий 64-80 мг/м3 пыли. Проектная скорость движения газа в активной части электрофильтра 0,5 м/с. Пройдя через газораспределительные решетки дырчатого типа, газ равномерно распределяется по активной части электрофильтра.

Электрофильтры КМ-21 расположены параллельно по ходу газа. Очистка газов состоит из трех основных стадий: зарядка частиц пыли и аэрозолей, осаждение заряженных частиц на осадительных электродах, удаление пыли с электродов.

Зарядка и осаждение частиц производится с помощью электродной системы, соединенной с источником высокого напряжения. В качестве источника высокого напряжения используются полупроводниковые трансформаторно-преобразовательные агрегаты АТФ-1000, ОПМД-600, АТПОМ-600. В зависимости от мощности агрегата он может включаться на одну или две секции электрофильтра.

При подаче на электродную систему постоянного тока высокого напряжения (50-55 кВ) между электродами возникает электрическое поле, обуславливающее создание коронного разряда, необходимого для зарядки частиц, поступающих с очищаемым газом и их осаждения после зарядки.

Частицы пыли, встречая на своем пути ионы, адсорбируют их, заряжаются и под действием сил электрического поля движутся к осадительным электродам.

Удаление осевшей на электродах пыли производится периодической промывкой, во время которой слой пыли разрушается и в виде пульпы выводится из фильтра по сливным трубопроводам в зумпф на технологический участок.

После окончания промывки, до открытия газа, электрофильтр выводится на рабочий режим.

При установлении рабочего режима на электрофильтр подается газ для очистки. Увлажнение газов производится путем подачи пара в скрубберную часть электрофильтра. Давление пара в линии контролируется манометром.

Максимальное количество одновременно отключенных электрофильтров – два фильтра.

Степень очистки газа от пыли (80-95%) ежесуточно определяется службой технического контроля.

Очистка газов на пенных аппаратах. Очищенные электрофильтрами газы собираются в общий коллектор и транспортируются для дальнейшей санитарной очистки в восьми пенных аппаратах, включенных параллельно.

Информация о работе Определение гранулометрического состава методом седиментации дисперсных систем