Неметаллические материалы

Автор работы: Пользователь скрыл имя, 20 Мая 2015 в 02:27, реферат

Краткое описание

Неметаллические материалы являются не только заменителями металлов, но и применяются как самостоятельные, иногда даже незаменимые материалы. Отдельные материалы обладают высокой механической прочностью, легкостью, термической и химической стойкостью, высокими электроизоляционными характеристиками, оптической прозрачностью и т. п. Особо следует отметить технологичность неметаллических материалов.

Вложенные файлы: 1 файл

Неметаллические материалы.doc

— 571.00 Кб (Скачать файл)

В состав клеев горячей вулканизации входит вулканизующий агент. Склейку проводят при температуре вулканизации 140—150"С. Соединение получается прочным, подчас не уступающим прочности целого материала.

При введении в состав клеевой композиции активаторов и ускорителей получают самовулканизующийся клей (процесс вулканизации протекает при нормальной температуре). Для увеличения адгезии вводят синтетические смолы (пример такой композиции клей 88Н). Соединение получается достаточно прочное. Недостатком клея 88Н является нестойкость пленки к керосину, бензину и минеральным маслам. Клей 88НП образует соединение, стойкое к морской воде. Хорошей склеивающей способностью и стойкостью к действию масел и топлив обладают клеи 9М-35Ф, ФЭН-1 и др.

В случае необходимости склеивания теплостойких резин на основе кремнийорганического каучука и приклеивания их к металлам применяют клеи, содержащие в своем составе кремнийорганические смолы (клей КТ-15, КТ-30, MAC-IB). Клеевые соединения могут работать при температурах от   -60 до 200-300°С.

Клей-герметик Виксинт применяется для склеивания резин, стекла, полиимидной пленки, стеклянных тканей.

3. СВОЙСТВА КЛЕЕВЫХ СОЕДИНЕНИЙ

Клеевые соединения наиболее эффективно работают на сдвиг (τ = 0,6 - 3 кгс/мм2). В клеевых соединениях может происходить равномерный и неравномерный отрыв и отдирание (отслаивание) у кромки шва.

В случае неравномерного отрыва прочность соединения в несколько раз

меньше, чем при равномерном отрыве. При сжатии прочность клея больше в 10—100 раз, чем при растяжении.

Прочность склейки существенно зависит от температуры, причем большое влияние оказывает вид клея и характер напряженного состояния. Коэффициент Пуассона клея μ = 0,3; модуль сдвига G = О,38Е; модуль упругости Е = 200 - 400 кгс/мм2; удлинение отвержденной пленки около 3,5%.

Теплостойкость клеев различна. Фенолокаучуковые и эпоксидные клеи работают длительно (до 30000 ч) при температуре 150°С и выше. Полиароматические и элементоорганические клеи выдерживают температуру 200 —400сС в течение 2000 ч; карборансодержащие клеи — до 600°С в течение сотен часов.

Клеящие материалы со временем «стареют». В условиях эксплуатации и при хранении склеенных изделий наступает охрупчивание клея, которое протекает тем быстрее, чем выше температура. Увеличение жесткости клея вызывает возрастание концентрации напряжений, вследствие чего прочность падает. Наиболее высокой термостабильностью обладают полиимидные и полибензимидазольные клеи. Некоторые клеи при действии переменных температур теряют 8 — 20% прочности.

Выносливость — число циклов до разрушения клеевого шва — зависит от вида клея. В среднем при несимметричном цикле нагрузки число циклов нагружения 106 —107.                                                                                                                                   

 таблица 4   

 Физико-механические свойства  конструкционных смоляных клеев              

Тип клея

Предел  прочности ,    кгс/мм2

Теплостойкость,

С

Водостойкость (сравнительная)

Температура склеивания, °С

при сдвиге

при равномерном

отрыве

при неравномерном

отрыве

Фенолоформальдегидный

1,3-1,5

-

__

60-100

Хорошая

20 или

50-60

Фенолкаучуковый

1,4-2,5

1.7-2,0

0,30-0,50

200-350

Отличная

165-205

Фенолополивинилацеталевые

1,7-1,8

3,6-6

0,08-0,12

200-350

Хорошая

180

Фенолополивинил-

бутиральный

2,2

3,2-3,5

0,30

60-80

Удовлетворительная

120-140

Фенолокремнийорганические

1,2-1,7

2,8-3,0

-

250-600

Хорошая

180-200

Эпоксидный

1-3

1-6

0,1-0,15

60-350

Удовлетворительная

20 или

80-210

Полиуретановый   .

1,1-2,0

2,2 – 3,5

0,25 – 0,30

60-100

Хорошая

18-25

Полиуретановые  карборансодержащие

1,0-2,0

-

_

350-1000

»

или 105

150

Кремнийорганический

0,90-1,75

1,5-2,2

0,08-0,20

350-1200

Удовлетворительная

180-270

Карбамидный

1,3

60

Низкая

15-30

Полибензимидазольный

1,5 — 3,0

_

_

350-540

Отличная

150-400

Полиимидный

1,5-3,0

300-375

»

180-260


 

 

________ЛАКОКРАСОЧНЫЕ МАТЕРИАЛЫ_________

1. ОБЩИЕ СВЕДЕНИЯ, СОСТАВ  И КЛАССИФИКАЦИЯ ЛАКОКРАСОЧНЫХ  МАТЕРИАЛОВ

Лакокрасочные материалы принадлежат к группе пленкообразующих материалов После нанесения в жидком состоянии на окрашиваемые поверхности они образуют пленки. Высохшие пленки называются покрытиями. Лакокрасочные материалы предназначены для защиты металлов от коррозии, а неметаллических материалов (древесины, пластмасс             и т.д.) -от увлажнения и загнивания; они сообщают поверхности специальные свойства (электроизоляционные, теплозащитные и другие) и придают изделиям декоративный внешний вид.

Защита изделий от влияния внешней среды лакокрасочными покрытиями является наиболее доступной и широко применяется в машиностроении С помощью защитных покрытий срок эксплуатации аппаратуры, оборудования различных металлоконструкций увеличивается в несколько раз. К лакокрасочным материалам предъявляются определенные требования- высокая адгезия к защищаемым поверхностям, теплостойкость и химическая устойчивость, водонепроницаемость, светостойкость, гладкость твердость и эластичность пленки, хорошие защитные свойства.

Состав и классификация лакокрасочных материалов. Компонентами лакокрасочных материалов являются пленкообразующие вещества; смолы для увеличения адгезии, придания пленке твердости и блеска; растворители (скипидар, спирты, ацетон) и разбавители (бензол) для растворения пленкообразующего и других компонентов; пластификаторы (дибутилфталат и др) сохраняющие эластичность покрытия, снижающие его воспламеняемость и улучшающие морозостойкость; отвердители термореактивных пленкообразующих (амины); пигменты и красители - придающие определенный цвет и обладающие защитными свойствами; наполнители (тальк, каолин) - для повышения вязкости материала и снижения блеска покрытия; специальные добавки для тропикостойкости, стабилизации свойств

В качестве пленкообразующих веществ применяют в основном синтетические смолы, эфиры целлюлозы, реже высыхающие растительные масла.

По составу лакокрасочные материалы подразделяют на лаки, эмали, грунты шпатлевки; по пленкообразующему веществу они могут быть смоляными, эфироцеллюлозными (нитроцеллюлозные и этилцеллюлозные) и маслосодержащими (битумные, канифольные).

Лаки являются растворами пленкообразующих веществ в растворителях иногда с добавками пластификаторов, ускорителей, стабилизаторов (в составе лака обязательно присутствует смола). Лаки предназначены для защиты поверхности изделия от воздействия внешней среды.

Эмали состоят из лака и пигмента. Для получения не глянцевых, а матовых покрытий в эмали вводят наполнитель. Пигменты придают эмали цвет и некоторые  специфические  свойства,  например  белые  пигменты (ZnO, TiO2) — атмосферостойкость и водоупорность; алюминиевая пудра — стойкость к действию влаги и ультрафиолетовых лучей; сажа — токопроводимость и т. д.

Грунты защищают металл от коррозии и увеличивают адгезию последующих слоев. В состав грунта входят лак и пигмент, обладающий защитными свойствами. В зависимости от вида пигмента грунты подразделяют на следующие группы: содержащие соли хромовой кислоты, цинковый и стронциевый крон (образующие окисные пленки на металле); содержащие свинцовый или железный сурик (пассивирующие грунты); содержащие цинковую пыль (протекторные грунты) и инертные пигменты (соединения титана и т. д.), создающие изолирующие покрытия.

Хроматные грунты применяют для защиты магниевых и алюминиевых сплавов. Свинцовый сурик образует на поверхности металла гидрат закиси железа. Эти грунты применимы для защиты стальных деталей.

Защитное действие цинка основано па его более электроотрицательном потенциале по отношению к железу. Эти грунты применяют для защиты стальных деталей, работающих во влажных условиях.

Для защиты стальных деталей применяют также фосфатирующие грунты. Такой грунт реагирует с поверхностью стальных деталей и образует на стали фосфатно-хроматную пленку сложного состава.

Шпатлевки предназначены для выравнивания неровностей на поверхности изделий перед окраской. В состав шпатлевок входят лак, пигмент и наполнитель. Шпатлевки наносят на предварительно загрунтованную поверхность.

Для надежной защиты поверхности изделий в большинстве случаев применяют многослойное покрытие, состоящее из слоев разного назначения, называемое системой покрытия.

Непосредственно на деталь наносится грунт, затем шпатлевка, далее следует эмаль и покровный лак. Число слоев обычно составляет 2 — 6, а иногда и 14.

Смоляные термопластичные лакокрасочные материалы. Из термопластичных смоляных материалов получили широкое распространение перхлорвиниловые и акриловые. Перхлорвиниловые эмали (ХВ, ХС) применяют для окраски металлов, древесины, бетона. Покрытия негорючи, водоустойчивы, химически стойки, могут работать в контакте с минеральным маслом и топливом, не поддаются действию тропических условий, имеют хорошие электроизоляционные свойства. Недостатки покрытий: невысокая адгезия к металлам, отсутствие глянца, низкая теплостойкость (60 — 90°С), неприятный запах.

Материалы на основе акриловых смол термопластичны, но более теплостойки и дают покрытия эластичные, стойкие к ударным нагрузкам, с хорошей адгезией к металлам. Акриловые эмали (АК и АС) могут работать в условиях 98-100%-ной влажности при температуре 55-60°С. При нанесении на эпоксидный грунт покрытие сохраняет защитные свойства в течение 3 — 6 лет.

Покрытия на основе термореактивных смол. Алкидные материалы вырабатывают на основе глифталевой (ГФ) и пентафталевой (ПФ) смол, часто модифицированных растительными маслами. Покрытия обладают высокой твердостью, прочностью, удовлетворительной адгезией к различным материалам. При введении алюминиевой пудры покрытия выдерживает длительно температуру 120°С и кратковременно температуру до 300°С. К недостаткам алкидных покрытий, относится склонность к старению, недостаточная устойчивость к условиям тропического климата и щелочным средам.

Эпоксидные лакокрасочные материалы на основе эпоксидных смол и их модификаций с различными отвердителями дают покрытия ЭП, обладающие хорошей адгезией к металлам и неметаллическим материалам, значительной твердостью, химической стойкостью к различным средам, в том числе к щелочным и, высокими электроизоляционными свойствами. Покрытия при сушке не дают усадки и стойки к колебаниям температуры.

Полиэфирным покрытиям присуща большая твердость, сильный блеск, удовлетворительная, прочность на истирание. Однако они плохо сопротивляются ударным нагрузкам и малоэластичны; используются главным образом при окраске деревянных (и бетонных) поверхностей, адгезия полиэфирных лаков к металлам невысокая.

Полиуретановые лаки, эмали, грунты имеют очень хорошую адгезию к различным материалам, хорошо сопротивляются истиранию, эластичны, атмосферостойкие, газонепроницаемы, могут работать в контакте с водой, маслами, бензином и растворителями, являются хорошими диэлектриками. Недостатком этих материалов, ограничивающих их применение, является токсичность.

Наиболее теплостойки лакокрасочные материалы на основе кремнийорганических полимеров (КО). Покрытия стойки к влаге, окислению, озону, солнечному свету и радиации, химически инертны, хорошие диэлектрики. Однако они имеют невысокую адгезию к различным материалам и требуют горячей сушки (200°С). Кремнийорганические лаки и эмали используют в основном в качестве электроизоляционных материалов. Модифицированные кремнийорганические лаки и эмали защищают металлические поверхности от длительного воздействия высоких температур.

Полиимидные покрытия теплостойки, выдерживают тепловые удары от - 196 до + 340°С. Покрытия прочные, устойчивы к воздействию растворителей и кислот, стойки к радиации и обладают диэлектрическими свойствами. Получение этих покрытий требует высокой температуры и тщательного соблюдения технологии.

2. СРАВНИТЕЛЬНЫЕ СВОЙСТВА  ЛАКОКРАСОЧНЫХ ПОКРЫТИЙ

По условиям эксплуатации лакокрасочные покрытия подразделяют на стойкие внутри помещения; атмосферостойкие; химически стойкие; водостойкие; термостойкие; масло- и бензостойкие и электроизоляционные. Термостойкость (в°С) различных лакокрасочных покрытий приведена ниже:

·         Нитроцеллюлозные (НЦ)................................... До 80,

·         Перхлорвиниловые   (ХВ).................................. 80 — 90'

·         Эпоксидные (ЭП)................................................ 150-200

·         Алкидные (ГФ, ПФ).............. -........................... 150-300

·         Полиуретановые  (УР)....................................     180

·         Акриловые  (АК).............................................     180

·         Кремнийорганические   (КО)...................... ".      300-600 (1000,  1  мин)

Информация о работе Неметаллические материалы