Шпаргалки по "Морфологии"

Автор работы: Пользователь скрыл имя, 16 Декабря 2012 в 16:21, шпаргалка

Краткое описание

1.Назовите свойства нервной и мышечной ткани. Дайте краткую характеристику возбудимости, проводимости, рефрактерности, лабильности.
Основными функциональными свойствами нервной ткани являются возбудимость и проводимость. Возбудимость нейрона проявляется в способности воспринимать раздражение и отвечать на него определенным видом деятельности. Возбудимость – это важнейшее свойство всех живых клеток. Резко выраженная в нервной ткани, она присуща и другим тканям.

Вложенные файлы: 1 файл

Морфология.docx

— 88.99 Кб (Скачать файл)

11. Законы проведения возбуждения по нерву.

При изучении проведения возбуждения  по нерву было установлено несколько  необходимых условий и правил (законов) протекания этого процесса. Анатомическая и физиологическая  непрерывность волокна. Проведение импульсов возможно лишь при условии  анатомической целостности волокна, поэтому как перерезка нервных  волокон, так и любая травма поверхностной  мембраны нарушают проводи­мость. Непроводимость наблюдается также при нарушении физиологической целост­ности волокна (блокада натриевых каналов возбудимой мембраны тетродотоксином или местными анестетиками, резкое охлаждение и т. п.). Проведение нарушается и при стойкой деполяризации мембраны нервного волокна ионами, накапливающимися при ишемии в межклеточных щелях. Механическая травма, сдавливание нерва при воспали­тельном отеке тканей могут сопровождаться частичным или полным нарушением функ­ции проведения. Двустороннее проведение. При раздражении нервного волокна возбуждение рас­пространяется по нему и в центробежном, и в центростремительном направлениях. Это доказывается следующим опытом.

12. Волокна типа АВС и их функциональная характеристика.

Волокна делятся на A, B и C: А – соматические волокна, связанные с двигательным анализатором (типы: α, β, γ, δ). Миелизированные волокна (max. 120 м/с). Длительность потенциала действия от 0,5 до 1 м/с. Следовая деполяризация – 20-30 м/с. Aα – экстрафузальные мышечные волокна; находятся в передних рогах спинного мозга. Имеет отношение к скелетной системе. Aß – тактильные рецепторы (прикосновения и давление). Аγ – мышечная система. Внутренние мышцы. Расположены в передних рогах СМ («мышечные веретена»). Связаны с ретикульно-спинальным путем. Аδ – болевая и температурная чувствительность. В – вегетативные волокна. Преганглионарные. Также миелизированные. Скорость проведения – 3 до 18 м/с. Потенциал действия – от 1 до 2 м/с. Следовая деполяризация – 50-60 м/с. С – вегетативные постганглионарные волокна. Немиелизированые. Минимальная скорость – от 0,5 м/с. Потенциал действия – 2-3 м/с. Следовая деполяризация – 200-300 м/с.

13. Что такое синапс, его строение. Роль медиаторов в передаче возбуждения в синапсах.

Си́напс - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном. Типичный синапс — аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической, образованной булавовидным расширением окончанием аксона передающей клетки и постсинаптической, представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае — участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую. Между обеими частями имеется синаптическая щель — промежуток шириной 10—50 нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами. Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной. Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной, в химических синапсах она рельефна и содержит многочисленные рецепторы. В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки, содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору. о способу передачи возбуждения с пресинаптической на постсинаптическую мембрану выделяют химические и электрические (так называемые эфапсы) синапсы. В синапсах с химической передачей возбуждения между пре- и постсинаптической мембранами имеется синаптическая щель, куда выделяется химическое вещество-передатчик — медиатор. Химические С. часто обозначают по названию медиатора (например, холинергические, адренергические, серотонинергические и т.п.). В эфапсе пре- и постсинаптические мембраны плотно соприкасаются и возбуждение передается посредством электрического тока. В зависимости от изменения биопотенциала постсинаптической мембраны различают С. деполяризующие, или возбуждающие, и гиперполяризующие, или тормозные. Механизм передачи возбуждения принципиально одинаков во всех химических С. В нем можно выделить следующие основные этапы: синтез и депонирование медиатора в пресинаптическом нейроне и его окончаниях; высвобождение медиатора из депонирующих везикул и его выход в синаптическую щель; взаимодействие медиатора со специфическими хеморецепторами постсинаптической мембраны с последующей генерацией биоэлектрического потенциала; инактивация выделенного медиатора с помощью ферментов или системы обратного поглощения.

14. Какое значение имеет центральная нервная система. Каково строение нейрона и значение его отдельных частей. Какие виды нейронов различают в центральной нервной системе.

Центральная нервная система (ЦНС) — основная часть нервной системы  животных, состоящая из нейронов и  их отростков; представлена у беспозвоночных системой тесно связанных между  собой нервных узлов (ганглиев), у  позвоночных животных (включая людей) — спинным и головным мозгом. Главная и специфическая функция  ЦНС — осуществление простых  и сложных высокодифференцированных отражательных реакций, получивших название рефлексов. У высших животных и человека низшие и средние отделы ЦНС — спинной мозг, продолговатый  мозг, средний мозг, промежуточный  мозг и мозжечок — регулируют деятельность отдельных органов и систем высокоразвитого  организма, осуществляют связь и  взаимодействие между ними, обеспечивают единство организма и целостность  его деятельности. Высший отдел ЦНС  — кора больших полушарий головного  мозга и ближайшие подкорковые  образования — в основном регулирует связь и взаимоотношения организма  как единого целого с окружающей средой. Нейроны - это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высокоспециализированная и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов. Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы, а также из отростков. Выделяют два вида отростков: дендриты и аксон. Аксон — обычно длинный отросток, приспособленный для проведения возбуждения и информации от тела нейрона или от нейрона к исполнительному органу. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов), и которые передают возбуждение к телу нейрона. Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии. 1. Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено. 2. Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге. 3. Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях. 4. Мультиполярные нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе. 5. Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

15. Какие виды синапсов имеются в центральной нервной системе. В чем их значение? Особенности передачи возбуждения в синапсах.

Синапс - это морфофункциональное  образование ЦНС, которое обеспечивает передачу сигнала с нейрона на другой нейрон или с нейрона на эффекторную клетку (мышечное волокно, секреторную клетку). Все синапсы ЦНС можно классифицировать следующим образом. 1. По локализации: центральные (головной и спинной мозг) и периферические (нервно-мышечный, нейросекреторный синапс вегетативной нервной системы). Центральные синапсы можно в свою очередь разделить на аксо-аксональные, аксо-дендритические (дендритные), аксо-соматические, дендро-дендритические, дендро-соматические и т.п. Согласно Г. Шенсрду, различают реципрокные синапсы, последовательные синапсы и синаптические гломерулы (различным способом соединенные через синапсы клетки). 2. По развитию в онтогенезе: стабильные (например, синапсы дуг безусловного рефлекса) и динамичные, появляющиеся в процессе индивидуального развития. 3. По конечному эффекту: тормозные и возбуждающие. 4. По механизму передачи сигнала: электрические, химические, смешанные. 5. Химические синапсы можно классифицировать: а) по форме контакта - терминальные (колбообразное соединение) и преходящие (варикозное расширение аксона); б) по природе медиатора - холинергические (медиатор - ацетилхолин, АХ), адренергическис (медиатор - норадреналин, НА), дофаминергические (дофамин), ГАМК-ергические (медиатор - гаммааминомасляная кислота), глицинергические, глутаматергические, аспартатсргические, пептидергические (медиатор - пептиды, например, вещество Р), пуринергические (медиатор - АТФ). В центральной нервной системе нервные клетки связаны друг с другом посредством синапсов. Синапс — место контакта двух нейронов. Центральные синапсы делятся на: Аксосоматические - обеспечиваю связь между телом нервной клетки и аксоном другой нервной клетки; Аксодендритические - связывают аксоны и дендриты нейронов. Аксо-аксональные - осуществляют контакт между аксонами нервных клеток. Таким образом, центральные синапсы обеспечивают многочисленные связи между нейронами, что делает возможной сложную координацию и интеграцию рефлекторной деятельности. Синапсы центральных нейронов, так же как и периферических, состоят из нервного окончания (терминали), покрытого пресинаптической мембраной, синаптической щели и постсинаптической мембраны, находящейся на теле или дендритах нейрона, к которым передаются нервные импульсы.

В нервных окончаниях вырабатываются и накапливаются особые химические вещества участвующие в передаче возбуждения через синапс. Эти вещества получили название медиаторов.

16. Что является основной формой нервной деятельности. Перечислите компоненты рефлекторной дуги. Какое значение имеют отдельные звенья рефлекторной дуги? Классификация рефлексов.

Основной формой нервной деятельности являются рефлексы. Рефлекс - ответная реакция организма на раздражение  из внешней или внутренней среды, осуществляемая при посредстве центральной  нервной системой. Раздражение кожи подошвенной части ноги у человек вызывает рефлекторное сгибание стопы и пальцев. Это подошвенный рефлекс. Рефлекторная дуга – последовательно соединенная цепочка нервных клеток, которая обеспечивает осуществление реакции, ответа на раздражение. Рефлекторная дуга состоит из шести компонентов: рецепторов, афферентного пути, рефлекторного центра, эфферентного пути, эффектора (рабочего органа), обратной связи. Рефлекторные дуги могут быть двух видов: 1) простые – моносинаптические рефлекторные дуги (рефлекторная дуга сухожильного рефлекса), состоящие из 2 нейронов (рецепторного (афферентного) и эффекторного), между ними имеется 1 синапс; 2) сложные – полисинаптические рефлекторные дуги. В их состав входят 3 нейрона (их может быть и больше) – рецепторный, один или несколько вставочных и эффекторный. Рефлекторная дуга состоит из: рецептора — нервное звено, воспринимающее раздражение; афферентного звена — центростремительное нервное волокно — отростки рецепторных нейронов, осуществляющие передачу импульсов от чувствительных нервных окончаний в центральную нервную систему; центрального звена — нервный центр (необязательный элемент, например для аксон-рефлекса); эфферентного звена — осуществляют передачу от нервного центра к эффектору. эффектора — исполнительный орган, деятельность которого изменяется в результате рефлекса. Все рефлексы делятся на 2 большие группы: безусловные и условные (приобретенные). Безусловные (врожденные) рефлексы, в реализации которых принимает участие кора головного мозга и подкорковое образование, рассматриваются в главе XV. Безусловные рефлексы можно классифицировать на группы по ряду признаков. По месту расположения рецепторов, вызывающих рефлекторный акт: экстерорецептивные - рефлексы на слуховые, обонятельные, вкусовые, зрительные, механические и термические стимулы. Интерорецептивные рефлексы - рефлексы, возникающие при раздражении интерорецепторов вследствие изменений условий среды и направленные на сохранение постоянства внутренней среды. проприрецептивные рефлексы - рефлексы, возникающие при раздражении рецепторов, расположенных в структурах опорно-двигательной системы (суставные, сухожильные, мышечные) и в тканях (механорецепторы, хеморецепторы и др.). По расположению центрального звена: спинальные (двигательные); бульбарные (глотательные, дыхательные, слюноотделительные); мезэнцефалические (ориентировочные, зрительные, слуховые); диэнцефалические (защитные, пищевые, половые); мозжечковые; корковые. По локализации эфферентной части: соматические и вегетативные рефлексы. По характеру ответной реакции: двигательные, секреторные, сосудистые. По характеру влияния на деятельность эффектора: возбудительные и тормозные. По биологическому значению: пищевые, оборонительные, половые, локомоторные и др. рефлексы.

17. Торможение в цнс и его значение. Первичное и вторичное торможение.

Торможение — в физиологии —  активный нервный процесс, вызываемый возбуждением и проявляющийся в  угнетении или предупреждении другой волны возбуждения. Обеспечивает (вместе с возбуждением) нормальную деятельность всех органов и организма в  целом. Имеет охранительное значение (в первую очередь для нервных  клеток коры головного мозга), защищая  нервную систему от перевозбуждения. Первичное торможение. Первичное торможение возникает в специальных тормозных клетках, примыкающих к тормозному нейрону. При этом тормозные нейроны выделяют соответствующие нейромедиаторы. Виды первичного торможения. Постсинаптическое — основной вид первичного торможения, вызывается возбуждением клеток Рейншоу и вставочных нейронов. При этом типе торможения происходит гиперполяризация постсинаптической мембраны, что и обуславливает торможение. Примеры первичного торможения: Возвратное — нейрон воздействует на клетку, которая в ответ тормозит этот же нейрон. Реципрокное — это взаимное торможение, при котором возбуждение одной группы нервных клеток обеспечивает торможение других клеток через вставочный нейрон. Латеральное — тормозная клетка тормозит расположенные рядом нейроны. Подобные явления развиваются между биполярными и ганглиозными клетками сетчатки, что создает условия для более четкого видения предмета. Возвратное облегчение — нейтрализация торможения нейрона при торможении тормозных клеток другими тормозными клетками. Пресинаптическое — возникает в обычных нейронах, связано с процессом возбуждения. Вторичное торможение. Вторичное торможение возникает в тех же нейронах, которые генерируют возбуждение. Виды вторичного торможения. Пессимальное торможение — это вторичное торможение, которое развивается в возбуждающих синапсах в результате сильной деполяризации постсинаптической мембраны под действием множественной импульсации. Торможение вслед за возбуждением возникает в обычных нейронах и также связано с процессом возбуждения. В конце акта возбуждения нейрона в нем может развиваться сильная следовая гиперполяризация. В то же время возбуждающий постсинаптический потенциал не может довести деполяризацию мембраны до критического уровня деполяризации, потенциалзависимые натриевые каналы не открываются и потенциал действия не возникает.

18. Какие функции выполняет спинной мозг. Какие рефлекторные центры расположены в спинном мозгу.

Спинной мозг – это орган, относящийся  к центральной нервной системе. Спинной мозг выполняет две основные функции: рефлекторную и проводниковую. Рефлекторная функция спинного мозга обеспечивает движение. Через спинной мозг проходят рефлекторные дуги, с которыми связано сокращение мышц тела (кроме мышц головы). Белое вещество спинного мозга обеспечивает связь и согласованную работу всех отделов центральной нервной системы, осуществляя проводниковую функцию. Нервные импульсы, поступающие в спинной мозг от рецепторов, передаются по восходящим проводящим путям в головной мозг. Из головного мозга импульсы по нисходящим проводящим путям поступают к нижележащим отделам спинного мозга и оттуда — к органам. Длинными восходящими и нисходящими путями спинной мозг соединяет двусторонней связью периферию с головным мозгом. Афферентные импульсы по проводящим путям спинного мозга проводятся в головной мозг, неся ему информацию об изменениях во внешней и внутренней среде организма. По нисходящим путям импульсы от головного мозга передаются к эффекторным нейронам спинного мозга и вызывают или регулируют их деятельность.

Информация о работе Шпаргалки по "Морфологии"