Эллипс и его каноническое уравнение.

Автор работы: Пользователь скрыл имя, 06 Февраля 2014 в 16:56, курсовая работа

Краткое описание

Впервые кривые второго порядка изучались одним из учеников Платона. Его работа заключалась в следующем: если взять две пересекающиеся прямые и вращать их вокруг биссектрисы угла, ими образованного, то получится конусная поверхность. Если же пересечь эту поверхность плоскостью, то в сечении получаются различные геометрические фигуры, а именно эллипс, окружность, парабола, гипербола и несколько вырожденных фигур.

Содержание

1. Введение
2. Эллипс и его уравнение
3. Связанные определения
4. Свойства эллипса
5. Эллипс как кривая второго порядка
6. Каноническое уравнение эллипса
7. Длина дуги эллипса
8. Приближённые формулы для периметра
9. Площадь эллипса и его сегмента
10. Построение эллипса
11. Литература, ссылки

Вложенные файлы: 1 файл

Министерство образования и науки Российской Федерации....docx

— 500.61 Кб (Скачать файл)

С помощью циркуля и линейки


  1. Раствором циркуля, равным a, с центром в точке O отметим на одной из прямой точки Pи Р2, а на второй прямой раствором, равным b — точки Qи Q2. Полученные точки являются вершинами эллипса, а отрезки P1Ри Q1Q— его большая и малая оси, соответственно.
  2. С помощью линейки проводим через точку O произвольную наклонную линию. Затем раствором циркуля, равным а, с центром в точке O отмечаем на ней точку S, а раствором, равным b — точку R.
  3. Затем из точки S опускаем перпендикуляр на прямую P1Р2. Для этого произвольным раствором циркуля (но бо́льшим, чем расстояние от точки до прямой), с центром в точке S отмечаем на отрезке P1Рдве точки, переносим в них циркуль и отмечаем тем же радиусом точку пересечения окружностей S'. Затем с помощью линейки соединяем точки S и S', это и есть искомый перпендикуляр.
  4. Аналогичным способом опускаем перпендикуляр из точки R на прямую Q1Q2.
  5. Точка пересечения построенных перпендикуляров принадлежит эллипсу.
  6. Повторяя необходимое число раз шаги четырёх предыдущих пунктов, получим искомый эллипс.

С помощью двух иголок и нитки

 

В 2-х чёрных фокусах — 2 иголки, соединённые нитью. В красной точке — карандаш, который натягивает нить

Примем, что

  • AA= 2a — это большая ось эллипса,
  • BB= 2b — это малая ось эллипса,
  • Точки F и F— фокусы эллипса. Фокусы лежат на прямой AAна расстоянии a от точки B. Расстояние между фокусами FFравно 

Этот способ основан на определении (фокальном свойстве) эллипса: эллипс — геометрическое место точек, сумма расстояний от каждой из которых до фокусов постоянна и равна 2a.

Для этого способа лист бумаги нужно  приколоть к чертёжной доске.

1. В точки фокусов эллипса F и F1 втыкаются две иголки (иглы́, булавки, кнопки, тонких гво́здика…)

2. К этим двум иголкам привязываются  (у са́мой поверхности бумаги) концы нити длиной 2a — нужно, чтобы между иголками F и Fбыло 2a длины нити. Это удобно осуществить так:

  1. Берётся нитка длиной в несколько раз больше 2a.
  2. Один из концов нити привязывается к иголке F.
  3. В точку B втыкается третья иголка.
  4. Нить кладётся на лист дальше иголки B от прямой FF1, один раз (один виток) оборачивается вокруг иголки F(так что может скользить по ней), затем, держа нить левой рукой за свободный конец, её натягивают вдоль ломанной FBF1.
  5. Свободный конец нити зажимается в кулаке левой руки, и кулак прижимают к листу бумаги в стороне от будущего эллипса — так, чтобы кулак (и нить) не перемещались ни в направлении к точке Fни в направлении прочь от неё. Кулак держать так (зафиксированным) до тех пор, пока эллипс не будет построен. Вместо удерживания конца нити рукой, можно привязать конец нити к четвёртой иголке или кнопке, и, натянув нить, воткнуть эту иголку/кнопку в стороне от будущего эллипса.
  6. Выдёргиваем (удаляем) иголку B (нить при этом утрачивает натяжение).
  • Примечание: Вместо точки B третью иголку можно было воткнуть в точку A.

3. Грифелем карандаша оттягиваем  участок нити между иголками F и Fв сторону от прямой AA1, натягивая нить.

4. Оттягивающий нить грифель  карандаша прижимаем к бумаге  и, скользя грифелем по натянутой  нити от точки A до точки A1, рисуем половину эллипса, лежащую по одну сторону от прямой AA1.

5. Располагаем грифель карандаша  по другую сторону от нити, оттягиваем нить в другую сторону  от прямой AAи, так же как первую, рисуем вторую половину эллипса.

Чтобы нить не спадала вниз с грифеля  карандаша, на лист бумаги под нить можно подложить шайбу от резьбового соединения (шайбу подходящей толщины) и оттягивающим нить грифелем касаться бумаги внутри отверстия шайбы — чтобы во время рисования эллипса натянутая нить лежала на шайбе (грифель будет перемещать шайбу по бумаге и вдоль нити).

Усовершенствование способа

Можно не привязывать нить ни к  одной из иголок и нарисовать эллипс одним движением карандаша, а  не двумя:

  1. Так же втыкаем три иголки — в точки F, Fи B.
  2. Треугольник FF1B окружаем и обтягиваем нитью, и связываем концы натянутой нити — получается кольцо из нити. Длина кольца равна периметру треугольника FF1B.
  3. Выдёргиваем (удаляем) иголку B (кольцо из нити при этом утрачивает натяжение).
  4. Поместив грифель карандаша внутри кольца из нити, оттягиваем грифелем нить в сторону от прямой FF1, натягивая нить. Затем, удерживая нить натянутой, прижимаем грифель к бумаге и, скользя грифелем по натянутой нити вокруг отрезка FF1, рисуем эллипс не двумя движениями руки с карандашом, а одним (круговым).

 
 
 

 

 

Литература 
 
Корн Г., Корн Т. Свойства окружностей, эллипсов, гипербол и парабол // Справочник по математике. — 4-е издание. — М.: Наука, 1978. — С. 70—73.


  • Селиванов Д. Ф., Эллипс // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.

Ссылки


  • А. В. Акопян, А. А. Заславский. Геометрические свойства кривых второго порядка, — М.: МЦНМО, 2007. — 136 с.
  • И. Бронштейн. Эллипс // Квант, № 9, 1970.
  • А. И. Маркушевич. Замечательные кривые // «Популярные лекции по математике», выпуск 4.
  • S.Sykora, Approximations of Ellipse Perimeters and of the Complete Elliptic Integral E(x). Review of known formulae
  • Grard P. Michon. Perimeter of an Ellipse (Final Answers), 2000-2005. — 20 c.
  • Видео: Как нарисовать эллипс 

Информация о работе Эллипс и его каноническое уравнение.