Шпаргалка по "Теория вероятностей "

Автор работы: Пользователь скрыл имя, 16 Октября 2013 в 19:22, шпаргалка

Краткое описание

ответы на вопросы к зачету по дисциплине "теории вероятности"

Вложенные файлы: 1 файл

Otvety.doc

— 859.00 Кб (Скачать файл)

1.Классификация  случайных событий. Свойства вероятности  события, непосредственный подсчёт  вероятности. Примеры.

Классификация случайных событий.

Событие – исход нек. опыта (или к-л природного явления).

Соб-е наз-ся достоверным, если в рез-те испытания оно произойдет.

Соб-е наз-ся  невозможным, если в данных усл-ях оно не может произойти.

Соб-е наз-ся случайным, если в рез-те испытания оно как может произойти, так и не может.

Соб-я наз-ся  равновозможными, если появление 1 из них не предпочтительнее появления другого. 2 соб-я наз-ся несовместимыми, если 1 соб-е исключает появление другого.

Неск-ко соб-ий  наз-ся попарно несовместимыми, если появл-е любого из этих соб-ий исключает появление других. 2 соб-я наз-ся независимыми, если появл-е 1-го из них не влияет на возможность появл-я другого. Неск-ко соб-ий образуют единственно возможную систему соб-ий, если в рез-те испытания хотя бы 1 из них произойдет.

Полной системой соб-ий наз-ся единственно возможная система соб-ий, состоящая из соб-ий несовместимых. Соб-я образуют полную систему соб-ий, если в рез-те испытания обязательно произойдет 1 из этих соб-ий и только 1.

Суммой 2-х соб-ий наз-ют соб-е, состоящее в том, что хотя бы 1 из этих соб-ий произойдет. Произведением 2-х соб-ий наз-ют соб-е, состоящее в том, что оба соб-я произойдут.

Вероятность события – числовая характеристика возможности появления соб-я. Исход, при кот. соб-е появляется, будем наз-ть благоприятствующим этим соб-ям.

Классической  вероятностью

события А называют отношение числа исходов в кот соб имеет место к общему числу равновозможных и попарно несовместимых исходов. Р(А)=m\n,  m – исходы благоприятствующие исходу событий, n – полное число возм-х исходов

Сочетанием из n элементов по m наз-ся всякое неупорядочное подмножество содержащее m элементов, выбранных из данных n элементов. Число сочетаний обозначается

n: = 1*2*…*n (n: фактором)

Пример:        Попарная несовместимость озн невозможность совместного осущ-я исходов в 1 испытании. Соб А – при бросании кубика выпало 1 очко; m=1 соб; n=6 граней. P(A)=1\6

Свойства вероятности  события: 1) Вер-ть любого соб заключена между 0 и 1, 0≤P(A)≤1

2) Вер-ть достоверного соб =1; 3) Вер-ть невозможного соб =0.

2.Статистическое определение вероятности события и условия его применимости. Примеры.

Стат вер-ю  соб А  наз-ся относительная частота появления этого события в n произведённых испытаниях P(A)=w(A)=m\n, где P(A)-стат вер соб А; w(A) – относительная частота соб А; m – число испытаний в кот появилось соб А; n – общее число испытаний.

Стат-ое определение  вер-ти применимо к тем событиям с неопределённым исходом, кот обладают свойствами:

  1. Расм-ые события д\б исходами только тех испытаний, кот м\б воспроизведены неограниченное число раз при одном и том же комплексе условий. (появление войн, иск шедевров – бессмысленно)
  2. События должны обладать стат-й устойчивостью, те в различных сериях испытаний относит частота события изменяется незначительно, колеблясь ок постоянного числа.
  3. Число испытаний, в рез-те кот появл соб А д\б достаточно велико, тк только в этом случае можно считать  вер соб А приближённо равной её частоте.

Свойства вер, вытекающие из классического определения сохраняются и при статистическом опр-ии вер-ти: 1) Вер-ть любого соб заключена между 0 и 1, 0≤P(A)≤1 2) Вер-ть достоверного соб =1; 3) Вер-ть невозможного соб =0.

3.Несовместные и совместные события. Сумма события. Теорема сложения вероятностей(с доказательством) Пример.

Два соб-я наз-ся несовместимыми, если 1 соб-е исключает появление другого. Неск-ко соб-ий  наз-ся попарно несовместимыми, если появл-е любого из этих соб-ий исключает появление других.

Сложение вероятностей зависит от совместности и несовместности событий.

Несовместные  события. Вер-ть суммы двух несовм соб А и В равна сумме вер-ей этих соб-й. Это вытекает из того, что множество С = А+В включает подмножества А и В, не имеющие общих точек, и Р(А+В) = Р(А)+Р(В) по опр вер-ти на основе меры. По частотному опр-ю вер-ти в силу несовместности соб-й имеем: P(A+B) = = + = P(A) + P(B), где n и m - число случаев появления соб-й А и В соответственно при N испытаниях.

Противоположные события также являются несовместными и образуют полную группу. Отсюда, с учетом: P( ) = 1 - Р(А).  В общем случае для группы несовместных событий: P(A+B+...+N) = P(A) + P(B) + ... + P(N), если все подмножества принадлежат одному множеству соб-й и попарно несовм. А если эти подмножества образуют полную группу соб-й, то с учетом: P(A) + P(B) + ... + P(N) = 1

Совместные события. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

P(A+B) = P(A) + P(B) - P(A×B).               

Разобьем события А  и В каждое на два множества, не имеющие общих точек: А', A'' и B', B''. Во множества А'' и B'' выделим события, появляющиеся одновременно, и объединим эти множества в одно множество С. Для этих множеств действительны выражения:

С = A''×B'' º А'' º В'' º А×В,     P(C) = P(A'') = P(B'') = P(A×B).

P(A) = P(A')+P(A''),                 P(A') = P(A)-P(A'') = P(A)-P(A×B).

P(B) = P(B')+P(B''),                  P(B') = P(B)-P(B'') = P(B)-P(A×B).

Множества A', B' и С попарно  несовм : P(A+B) = P(A'+B'+C) = P(A') + P(B') + P(С).

В общем случае, для m различных  событий А1, А2, ..., Аm:

    P(A1+...+ Am) = P(Ai) - P(Ai×Aj) + P(Ai×Aj×Ak) -...+(-1)m+1P(A1×A2× ... ×Am).

Теорема сложения: Вер-ть суммы двух несовм-х соб-й = сумме вер-тей этих соб. P(A+B+…+К)=P(A)+P(B)+…+Р(К)

Доказательство: Пусть в рез-те испытания из общего числа n равновозможных и несовм-х исходов испытания соб-ю А благоприятствует m1 случаев, а соб-ю В – m2 случаев. Согласно классич определению P(A)=m1\n,  P(В)=m2\n. Т.к соб А и В несовм-е, то ни 1 из случаев, благоприят-х 1 из этих соб-й, не благоприят-т другому. Поэтому событию А+В будет благоприятств-ть m1+m2 случаев, следовательно:

Следствие 1: Сумма вер-ей событий, образующих полную группу, равна 1: P(A)+P(B)+…+Р(К)=1, Если события А,В,…,К образуют полную группу, то они единственно возможные и несовместимые.

ТК события А,В,…,К – единственно возможные, то событие А+В+…+К, состоящее в появлении в рез-те испытания хотя бы одного из этих событий, явл-ся достоверным, его вер-ть = 1 : Р(А+В+…+К)=1 В силу т\ч события А,В,…,К – несовместимые, к ним применима теорема сложения: Р(А+В+…+К)=Р(А)+Р(В)+…+Р(К)=1

Следствие 2: Сумма  вер-ей противоположных событий = 1 Р(А)+Р(`А )=1 Это следует из т\ч противоположные события образуют полную группу.

Пример 1. В урне 30 шаров: 10 красных, 5 синих и 15 белых. Найти вероятность появления цветного шара. Решение. Появление цветного шара означает появление либо красного, либо синего шара.

Вероятность появления  красного шара (событие А) Р (А) = 10 / 30 = 1 / 3. Вероятность появления синего шара (событие В) Р (В) = 5 / 30 = 1 / 6. События А и В несовместны (появление шара одного цвета исключает появление шара другого цвета), поэтому теорема сложения применима. Искомая вероятность P (A + B) = P (A) + P (B) = l / 3 + l / 6 = l / 2.


 

 

 

 

 

 

 

 

4. Полная группа  события. Противоположенные события.  Соотношение между вероятностями противоположенных событий (с выводом). Примеры.

Несколько событий образуют полную группу событий если в результате опыта обязательно появится хотя бы одно из них. Это означает, что в рез испытания должно произойти 1 и только 1 из этих событий.

Частным случаем событий , образующих полную группу, явл противоположные события. 2 несовместимых соб из кот-х 1 должно обяз-но произойти наз-ся противоположными. Событие противоположное соб А -> . (появление герба и решки у монеты)

Доказательство  теоремы о полной группе событий

Так как появление одного из событий полной группы достоверно, а вероятность достоверного события равна единице, то Р (A1 + A2 + ... + An) = 1.     (*)

Любые два события  полной группы несовместны, поэтому  можно применить теорему сложения: Р (А1 + А2 + ... + Аn) = Р (A1) + Р (A2) + ... + Р (Аn).    (**)

Сравнивая (*) и (**), получим  Р (А1) + Р (А2) + ... + Р (Аn) = 1.

Пример: Консультационный пункт института получает пакеты с контрольными работами из городов А, В и С. Вероятность получения пакета из города А равна 0,7, из города В — 0,2. Найти вероятность того, что очередной пакет будет получен из города С.

Решение. События "пакет получен из города А", "пакет получен из города В", "пакет получен из города С" образуют полную группу, поэтому сумма вероятностей этих событий равна единице: 0,7 + 0,2 + p =1. Отсюда искомая вероятность р = 1 — 0,9 = 0,1.

Пример 2. Попадание и промах при выстреле по цели — противоположные события. Если А — попадание, то противоположное событие — промах.

5.Зависимые  и независимые события. Произведение событий. Понятие условной вероятности. Теорема умножения вероятностей (доказательством). Примеры.

События А, Б, В... называют зависимыми друг от друга, если вероятность появления хотя бы одного из них изменяется в зависимости от появления или непоявления других событий. Примером зависимых событий являются события, происходящие при отборе единиц из совокупности по схеме невозвращенного шара, когда от появления годного или бракованного изделия при первом испытании зависит вероятность появления годного изделия при втором испытании.

События называются независимыми, если вероятности появления каждого из них не зависят от появления или непоявления прочих из них.

Произведением двух событий А и В называют событие АВ, состоящее в совместном появлении (совмещении) этих событий. Например, если А — деталь годная, В — деталь окрашенная, то АВ — деталь годна и окрашена.

Произведением нескольких событий называют событие, состоящее в совместном появлении всех этих событий. Например, если А, В, С — появление «герба» соответственно в первом, втором и третьем бросаниях монеты, то АВС — выпадение «герба» во всех трех испытаниях.

Условной вероятностью (РA (В)-усл вер-ть соб В относительно А) называют вероятность события В, вычисленную в предположении, что событие А уже наступило. пример условной вероятности Исходя из классического определения вероятности, формулу РA (В) = Р (АВ) / Р (А) (Р (А) > 0 можно доказать. Это обстоятельство и служит основанием для следующего общего (применимого не только для классической вероятности) определения. Условная вер-ть события В при условии, что событие А уже наступило, по определению, равна  РA (В) = Р (АВ) / Р (А)    (Р(A)>0).

Теорема умножения  вероятностей зависимых событий. Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:

Р (АВ) = Р (А) РA (В)

Доказательство

З а м е ч ан и е. Применив формулу (*) к событию ВА, получим  Р (ВА) = Р (В) Рв (А), или, поскольку событие  ВА не отличается от события АВ, -> Р(АВ) = Р (В) Рв (А)

Сравнивая формулы Р (АВ) = Р (А) РA (В) и Р(АВ) = Р (В) Рв (А), заключаем о справедливости равенства

Р (А) Ра (В) = Р (В) Рв (А)

С л е д с т в  и е. Вероятность совместного появления нескольких событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились:

      где   
явл вероятностью события An, вычисленной в предположении, что события А12,..., Аn — 1 наступили. В частности, для трех событий Р (AВС) = Р (А) РA (В) РAB (С). Порядок, в котором расположены события, может быть выбран любым, т. е. безразлично какое событие считатьпервым, вторым и т. д.

Пример 1. У сборщика имеется 3 конусных и 7 эллиптических валиков. Сборщик взял один валик, а затем второй. Найти вероятность того, что первый из взятых валиков — конусный, а второй — эллиптический.

Р е ш е н и е. Вероятность того, что первый валик окажется конусным (событие A), Р (А) = 3 / 10. Вероятность того, что второй валик окажется эллиптическим (событие В), вычисленная в предположении, что первый валик — конусный, т. е. условная вероятность РA (В) = 7 / 9.

По теореме умножения, искомая вероятность Р (АВ) = Р (А) РA (В) = (3 / 10) * (7 / 9) = 7 / 30. Заметим, что, сохранив обозначения, легко найдем: Р (В) = 7 / 10, РB (А) = 3 / 9, Р (В) РB (А) = 7 / 30, что наглядно иллюстрирует справедливость равенства (***).

6.Формулы полной вер-ти  и  Байеса с док-вом. Примеры.

Формула полной вер-ти. Теорема.

Если событие F может произойти  только при условии появления  одного из событий (гипотез) А1,А2,…,Аn, образующих полную группу, то вер-ть соб F =сумме произведений вероятностей каждого из этих событий на соответствующие условные вер-и события F.

По условию гипотезы А1,А2,…,Аn образуют полную группу, ->, они единственно возможные и несовместные. Т.к А1,А2,…,Аn - единственно возможные, а соб F может произойти только вместе с 1 из гипотез, то . В силу т\ч А1,А2,…,Аn несовместны, можно применить теорему сложения вер-ей:

По теореме умножения вер-ей .Следствием Т умножения и формулы полной вер-ти явл формула Байеса.

Формула Байеса: Пусть Н1, Н2 …— полная группа событий и A — некоторое событие положительной вероятности. Тогда условная вероятность того, что имело место событие Нk, если в результате эксперимента наблюдалось событие A, может быть вычислена по формуле:

 

Доказательство: По определению условной вероятности,

Пример: Два стрелка подбрасывают монетку и выбирают, кто из них стреляет по мишени (одной пулей). Первый стрелок попадает по мишени с вероятностью 1, второй стрелок — с вероятностью 0,00001. Можно сделать два предположения об эксперименте: и .

 Априорные вер-ти этих гипотез  одинаковы:  .

Рассмотрим событие  . Известно, что

Поэтому вероятность пуле попасть в мишень

Предположим, что событие  произошло. Какова теперь апостериорная ( «после опыта») вероятность каждой из гипотез ? Очевидно, что первая из этих гипотез много вероятнее второй (а именно, в  раз). Действительно,


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.Повторные независимые испытания. Формула Бернулли с выводом. Примеры

Если вер-ть наступления  события А в каждом испытании  не меняется в завис-ти от исходов  других, то такие испытания наз-ся независ-ми относит-но события А. Если независ-е повторные испытания проводятся при одном и том же комплексе условий, то вер-ть наступления соб-я А в каждом испытании одна и та же.

Последовательность испытаний, в кот 1 и те же события происходят с одинаковой вер-ю, наз последовательностью независ-х испытаний.

А соб, кот может иметь  место с вер-ю Р(А) в любом из n испытаний.

А ->P(A)

P(A)=P – вер-ть осущ-я события в каждом отдельном событии

- вер-ть неоосущ-я событий;  ; ;

Поставим задачу опр-я  вер-ти m-кратного осуществл-я события А в серии из n испытаний. Pm,n – вер-ть m-кратного осуществл-я события в серии n испытаний.

Условно рез-ты послед-ти независ-х испытаний м\б представлены: , тк в послед-ти независ-х испытаний, каждое из соб независимо и для m-кратного осуществл события они должны произойти совместно, соотв-я вер-ть опр-ся по ф-ле вер-ти произведения . Предполагая, что возможен и др порядок следования А и на множестве n испытаний, а кол-во комбинаций = , получим ф-лу m-кратного осуществ-я соб А в серии из n испытаний: àФормула Бернулли.  Используется при усл, что соб происх-т многократно.

Теорема: Если вер-ть А в каждом испытании постоянна, то вер-ть Pm,n того, что событие А наступит m раз в n независимых испытаниях, равна

, где q=1-p ф Бернулли применяется в тех случаях, когда число опытов невелико, а вероятности появления достаточно велики.

8.Локальная теорема Муавра-Лапласа, условия её применимости. Св-ва ф-ии f(x). Пример.

Аналогом ф Бернулли является  локальная ф Муавра-Лапласа, она асимптотическая (ф-ла, точность кот при оценке расм-го параметра  возрастает с увеличением аргумента). Локальная теорема Муавра – Лапласа Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р (0<p<1), событие наступит ровно m раз, приближенно равна (тем точнее, чем больше n). , где Р-вер-ть осущ-я события в отдельном испытании, q - вер-ть неосущ-я события в отдельном испытании, n – кол-во испытаний, , m – кол-во испытаний, в кот данное событие имеет место. ф-я явл-ся табличной функцией. Использование таблиц предполагает правила: 1. ; 2. - убывающая; 3.Четность ; 4.Для всех х>5 à

Пример Заявки, расм-ые фирмой удовлетв-ся в 30% случаях. Представлено 200 заявок. Найти в-ть т\ч не будет удовлетв-но 130 заявок из 200. Условие: n=200; m=130; P=0,7(70%); q=0,3(30%). -?

Решение В лок ф Муавра-Лапласа , тогда подставляем -1,54 в ф-лу     (1,54 ищем по таблице)

9Асимптотическая ф-ла Пуассона  и условия её применимости. Пример.

Ф-ла Пуассона характеризует вер-ть m-кратного осуществ-го события в серии из n испытаний, при условии, когда кол-во испытаний велико, а в-ть осуществ-я события в каждом из испытаний весьма мала, но т\о что np<10. При этом условии имеет место табличная формула Пуассона: , где n-велико, p-мало, =np, np<10. Ф-я Рm,n опред-ая ф Пуассона явл-ся табличной ф-ей, позволяющая находить значение вер-ей по заданным значениям m, n, p.

Пример: Электронная система состоит из 2000 эл-в, вероятность отказа каждого из кот сост 0,001. Найти: а) Вер-ть отказа любых 2х Эл-в системы б) вер-ть отказа более 2х Эл-в.

Решение: Поскольку кол-во испытаний(число Эл-в системы) в д\сл велико(2000), а в-ть наступления события (отказ Эл-в) мало (0,001) р=0,001 (вер-ть отказа 1 эл-та); nр=2000; 0,001=2<10, то для нахождения вер-ти ипольз-м ф Пуассона.

а) m=2; =np=2;

Чем больше множество, тем  больше вер-ть.

б)

                              


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10Интегральная теорема Муавра-Лапласа  и условия её применимости. Функция  Лапласа f(x) и её свойства. Пример.

Предельная теорема Муавра — Лапласа: Пусть событие А может произойти в любом из n независимых испытаний с одной и той же вероятностью Р и пусть — число осуществлений события А в n испытаниях. Тогда при n à∞  т.е. для любых вещественных x<y имеет место сходимость

Доказательство: Величина есть сумма независимых, одинаково распределённых случайных величин, имеющих распределение Бернулли с параметром, равным вероятности успеха : , где ;    

Особый вид асимпт-х формул представляет интегральная функ Муавра-Лапласа, а также следствия из неё. Инт ф М-Л позволяет находить вер-ть т\ч число повторений события m в серии из n испытаний не выдет за границы заданного интервала . Данная вер-ть выр-ся формулой: , где ;

Интегр. Функция Лапласа: ; Интегральная функция Лапласа явл-ся табличной. Структура аналогична структуре локальной ф-ии Муавра-Лапласа. Осн свойства: С1: Ф(0)=0˚; С2: Ф(х)↑ - возрастающая; С3: Ф(-х)= - Ф(х) – нечетная; С4: при х≥5 Ф(х)=1

Пример: Вер-ть т\ч покупателю нужна обувь 36 размера =0,3. Найти в-ть т\ч среди 2000 покупателей нуждающихся в обуви 36 размера окажется не менее 575.

Решение: m – покуп, кот купят 36 р; n=2000; 575≤m≤2000; Р=0,3; q=0,7 (обрат 0,3); Р(575≤m≤2000) - ?

Для реш задачи посредством  интегр фМ-Л определим х1 и х2

; х1 и х2 подставляем в интегр ф-лу:

 

Р(575≤m≤2000)=0,5(Ф(68)-Ф(-1,22))=0,5(Ф(68)+Ф(1,22))=0,5(1+0,775)=0,89 (по С4).

 

 

11Следствия из интегральной  теоремы Муавра-Лапласа с выводом.  Примеры.

Частными случаями инт т М-Л  явл-ся следствием из неё:

След1: Если в\ть наступления события в каждом отдельном испытании постоянно и отлично от 0 и 1, а число испыт велико, то событие имело место от np на величину непревосходящую r по абсолютной величине, нах по ф-ле: ;   ;   ( = ; = )

След2: Если в\ть наступления события в каждом отдельном испытании постоянно и отлично от 0 и 1, а число испыт велико, то событие имело место отклонение частности осуществл-я события от в\ти  на величину непревосходящую дельта по абсолютной величине, нах по ф-ле:

Пример: Всхожесть семян сост-т 80%, найти в\ть т\ч из 2500 семян, кол-во взошедших не выдет за границы интервала [1900; 2100].

Решение: n=2500-посев; p=0,8-в\ть всхода 80%; q=0,2-в\ть невхода; ; m-np, тогда

; , в следствии r =100, подставляем в ф-лу: (по С4)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12Понятие случайной величины  и её описание. Дискретная сл\в  и её закон (ряд) распределения. Независимые сл\в. Примеры.

Испытания связ-е с  осущ-ем события сопровожд-ся появлением некоторого численного значения - случайной величины. Случайной наз вел, предсказать значение кот заранее невозможно. Случайные величины принято обозначать (X,Y,Z), а соответствующие им значения (x,y,z)

Сл/в наз-ся дискретной, если она принимает конечное множество значений. Пусть Х={Х1; Х2;…Хn}- множество значений дискретной сл\вел.

Мерой возм-ти появления каждого  из данных знач явл соответствие вер\ти, т\о, способом описание сл\в явл соответ-ием  м\у значениями сл\в и вер-ми, с  кот она принимает указ-е значения. Закон распределения может быть задан аналитически, в виде таблицы или графически. Таблица соответствия знач-й сл\в и их вер-ей называется рядом распределения

Xi

X1

X2

Xk

Pi

P1

P2

Pk


Графическое представление  этой табл наз-ся многоугольником распределения.  При этом сумма всех ординат многоугольника распределения предст-т собой в\ть всех возможных значений сл\в, а, след, =1.

Следствие: Из определения закона распределения следует что события (Х=х),…, (Х=хк) –образуют полн. систему. => Р(Х=х1)+…+Р(Х=хк)=1    ßосновное св-во закона распределения. Сл\в наз-ся независимыми, если закон распределения одной из них не зависит от того, какое знач принимает другая сл\в. Условные распределения независ-х сл\в-н = их безусловным распределениям. Для т\ч сл\в Х и Y были независимы, необх, чтобы плотность совместного  распределения системы (X, Y) была = произведению плотностей распределения составляющих. f(x,y)=f1(x)*f2(x)

Для дискретных сл\в используются формулы: 

Пример. Последовательно послано 4 радиосигнала. Вер-ти приема каждого из них не зависят от того, приняты ли остальные сигналы, или нет. Вер-ти приема сигналов = соотв-но 0,2, 0,3, 0,4, 0,5. Определить вер-ть приема 3х радиосигналов. Решение:Событие приема 3х сигналов из 4х возможно в 4х случаях: ;    ;    

Для приема 3х сигналов необходимо совершение одного из событий  А, В, С или D. Т.о, находим искомую в-ть: 

13Математические операции над дискретными сл\велечинами. Приведите пример построения закона распределения сл\вел Z=X+Y или Z=XY по заданным распределениям X и Y.

Вид операции

Выражение знач. Сл\в

Выр знач вер-ти

 не изм-ся

 не изм-ся

x+y

xy


Над сл\вел можно выполнять  действия, кот состоят в действиях над значениями сл\в и соотв-х операциях над вер-ми. Соответствие действий наз значениями и вер-ми выражается таблицей ß.

Пример: Законы распределения числа бракованных деталей выпускаемые 2мя разными станками выр-ся таблицами:

0

1

2

0,1

0,3

0,6

0

1

0,8

0,2


Построить сл\в Z=X+Y

Решение:

0

1

2

3

0,08

0,26

0,54

0,12


à

Информация о работе Шпаргалка по "Теория вероятностей "