Схемы применения определенного интеграла

Автор работы: Пользователь скрыл имя, 11 Октября 2013 в 21:03, лекция

Краткое описание

Пусть требуется найти значение какой-либо геометрической или физической величины А (площадь фигуры, объем тела, давление жидкости на вертикальную пластину и т. д.), связанной с отрезком [a;b] изменения независимой переменной х. Предполагается, что эта величина А аддитивна, т. е. такая, что при разбиении отрезка [а; b] точкой с є (а; b) на части [а; с] и [с; b] значение величины А, соответствующее всему отрезку [а; b], равно сумме ее значений, соответствующих [а; с] и [с; b].
Для нахождения этой величины А можно руководствоваться одной из двух схем: I схема (или метод интегральных сумм) и II схема (или метод дифференциала).

Вложенные файлы: 1 файл

матемка.docx

— 200.25 Кб (Скачать файл)

1.1. Схемы применения определенного  интеграла

Пусть требуется найти значение какой-либо геометрической или физической величины А (площадь фигуры, объем тела, давление жидкости на вертикальную пластину и т. д.), связанной с отрезком [a;b] изменения независимой переменной х. Предполагается, что эта величина А аддитивна, т. е. такая, что при разбиении отрезка [а; b] точкой с є (а; b) на части [а; с] и [с; b] значение величины А, соответствующее всему отрезку [а; b], равно сумме ее значений, соответствующих [а; с] и [с; b].

Для нахождения этой величины А можно руководствоваться одной из двух схем: I схема (или метод интегральных сумм) и II схема (или метод дифференциала).

Первая схема базируется на определении  определенного интеграла.

1. Точками х= а, x1,..., x= b разбить отрезок [а;b] на n частей. В соответствии с этим, интересующая нас величина А разобьется на n «элементарных слагаемых» ΔAi (i = 1,...,n): А = ΔA1+ΔА+...+ ΔАn.

2. Представить каждое «элементарное  слагаемое» в виде произведения  некоторой функции (определяемой  из условия задачи), вычисленной  в произвольной точке соответствующего  отрезка на его длину: ΔA≈ ƒ(ci)Δxi.

При нахождении приближенного значения ΔАдопустимы некоторые упрощения: дугу на малом участке можно заменить хордой, стягивающей ее концы; переменную скорость на малом участке можно приближенно считать постоянной и т. д.

Получим приближенное значение величины А в виде интегральной суммы:

3. Искомая величина А равна пределу интегральной суммы, т. е.

Указанный «метод сумм», как видим, основан на представлении интеграла  как о сумме бесконечно большого числа бесконечно малых слагаемых.

Схема I была применена для выяснения  геометрического и физического  смысла определенного интеграла.

Вторая схема представляет собой  несколько видоизмененную схему I и  называется «метод дифференциала» или  «метод отбрасывания бесконечно малых  высших порядков»:

1) на отрезке [а;b] выбираем произвольное значение х и рассматриваем переменный отрезок [а; х]. На этом отрезке величина А становится функцией х: А = А(х), т. е. считаем, что часть искомой величины А есть неизвестная функция А(х), где х є [a;b] — один из параметров величины А;

2) находим главную часть приращения  ΔА при изменении х на малую величину Δх = dx, т. е. находим дифференциал dA функции А = А(х): dA = ƒ(х) dx, где ƒ(х), определяемая из условия задачи, функция переменной х (здесь также возможны различные упрощения);

3) считая, что dA ≈ ΔА при Δх → 0, находим искомую величину путем интегрирования dA в пределах от а до b:

41.2. Вычисление площадей  плоских фигур

Прямоугольные координаты

Как уже было установлено (см. «геометрический смысл определенного интеграла»), площадь криволинейной трапеции, расположенной «выше» оси абсцисс (ƒ(х) ≥ 0), равна соответствующему определенному интегралу:


Формула (41.1) получена путем применения схемы I — метода сумм. Обоснуем формулу (41.1), используя схему II. Пусть криволинейная  трапеция ограничена линиями у = ƒ(х) ≥ 0, х = а, х = b, у = 0 (см.  рис. 174).

Для нахождения площади S этой трапеции проделаем следующие операции:

1. Возьмем произвольное х Î [а; b] и будем считать, что S = S(x).

2. Дадим аргументу х приращение Δх = dx (х + Δх є [а; b]). Функция S = S(x) получит приращение ΔS, представляющее собой площадь «элементарной криволинейной трапеции» (на рисунке она выделена).

Дифференциал площади dS есть главная часть приращения ΔS при Δх → 0, и, очевидно, он равен площади прямоугольника с основанием dx и высотой у: dS = у • dx.

3. Интегрируя полученное равенство  в пределах от х = а до х = b, получаем 

Отметим,что если криволинейная трапеция расположена «ниже» оси Ох (ƒ(х) < 0), то ее площадь может быть найдена по формуле


Формулы (41.1)и (41.2) можно объединить в одну:

Площадь фигуры, ограниченной кривыми  у =  = fι(x) и у = ƒг(х), прямыми х = а и х = b (при условии ƒ2(х) ≥ ƒ1(х)) (см. рис. 175), можно найти по формуле

Если плоская фигура имеет «сложную»  форму (см. рис. 176), то прямыми, параллельными оси Оу, ее следует разбить на части так, чтобы можно было бы применить уже известные формулы.

Если криволинейная трапеция ограничена прямыми у = с и у=d, осью Оу и непрерывной кривой х = φ(у) ≥ 0 (см. рис. 177), то ее площадь находится по формуле

И, наконец, если криволинейная трапеция ограничена кривой, заданной параметрически

прямыми х = аих = bи осью Ох, то площадь ее находится по формуле

где а и β определяютсяиз равенств х(а) = а и х(β) =b. 

 

Пример 41.1. Найти площадь фигуры, ограниченной осью Ох и графиком функции у = х- 2х при х є [0; 3].

Решение: Фигура имеет вид, изображенный на рисунке 178. Находим ее площадь S:

 

 

Пример 41.2. Вычислить площадь фигуры, ограниченной эллипсом х = а cos t, у = b sin t.

Решение: Найдем сначала 1/4 площади S. Здесь х изменяется от 0 до а, следовательно, t изменяется от  до 0 (см. рис. 179). Находим:


Таким образом  . Значит, S = πаВ. 

 

Полярные координаты

Найдем площадь S криволинейного сектора, т. е. плоской фигуры, ограниченной непрерывной  линией r=r(φ) и двумя лучами φ=а и φ=β (а < β), где r и φ — полярные координаты (см. рис. 180). Для решения задачи используем схему II — метод дифференциала.

1. Будем считать часть искомой  площади S как функцию угла  φ, т. е. S = S(φ), где а ≤φ≤β (если φ = а, то S(a) = 0, если φ=β, то S(β) = S).

2. Если текущий полярный угол  φ получит приращение Δφ = dφ,  то приращение площади AS равно  площади «элементарного криволинейного  сектора» OAB.

Дифференциал dS представляет собой главную часть приращения ΔS при dφ→0 и равен площади кругового сектора О АС (на рисунке она  заштрихована) радиуса r с центральным углом dφ. Поэтому

3. Интегрируя полученное равенство  в пределах от φ = а до  φ = β, получим искомую площадь

 

 

Пример 41.3. Найти площадь фигуры, ограниченной «трехлепесткoвой розой» r=acos3φ (см. рис. 181).

Решение: Найдем сначала площадь  половины одного лепестка «розы», т. е.1/6часть  всей площади фигуры:

т. е. . Следовательно,

Если плоская фигура имеет «сложную»  форму, то лучами, выходящими из полюса, ее следует разбить на криволинейные  секторы, к которым применить  полученную формулу для нахождения площади. Так, для фигуры, изображенной на рисунке 182, имеем:

41.3. Вычисление длины дуги  плоской кривой

Прямоугольные координаты

Пусть в прямоугольных координатах  дана плоская кривая АВ, уравнение  которой у=ƒ(х), где а≤х≤ b.

Под длиной дуги АВ понимается предел, к которому стремится длина ломаной  линии, вписанной в эту дугу, когда  число звеньев ломаной неограниченно  возрастает, а длина наибольшего  звена ее стремится к нулю. Покажем, что если функция у=ƒ(х) и ее производная у' = ƒ'(х) непрерывны на отрезке [а; b], то кривая АВ имеет длину, равную


Применим схему I (метод сумм).

1. Точками х= а, х1..., х= b (х< x< ...< хn) разобьем отрезок [а; b] на n частей (см. рис. 183).  Пустьэтим точкам соответствуют точки М= А, M1,...,M=В накривой АВ. Проведем хорды М0M1, M1M2,..., Мn-1Мn, длины которых обозначим соответственно через ΔL1, AL2,..., ΔLn. Получим ломаную M0M1M... Mn-ιMn, длина которой равна Ln=ΔL+ ΔL2+...+ ΔL

2. Длину хорды (или звена ломаной)  ΔLможно найти по теореме Пифагора из треугольника с катетами Δxи Δуi:

По теореме Лагранжа о конечном приращении функции Δуi=ƒ'(сi)•Δхi, где ci є (xi-1;xi). Поэтому

а длина всей ломаной M0M1... Мравна

3.Длина l кривой АВ, по определению, равна

Заметим, что при ΔLi→0 также и Δx→0 ΔLi = и, следовательно, |Δxi|<ΔLi).

Функция  непрерывна на отрезке [а; b], так как, по условию, непрерывна функция ƒ'(х). Следовательно, существует предел интегральной суммы (41.4), когда max Δxi→ 0:

Таким образом, или в сокращенной записи  l =

Если уравнение кривой АВ задано в параметрической форме

где x(t) и y(t) — непрерывныефункции с непрерывными производными и х(а) = а, х(β) = b, то длина lкривой АВ находится по формуле

Формула (41.5) может быть получена из формулы (41.3) подстановкой x = x(t),dx = x'(t)dt,  

 

Пример 41.4. Найти длину окружности радиуса R.

Решение: Найдем 1/4 часть ее длины от точки (0;R) до точки (R;0) (см. рис. 184). Так как   то

Значит, l = 2πR. Если уравнение окружности записать в параметрическом виде х=Rcost, у = Rsint (0≤t≤2π), то

Вычисление длины дуги может  быть основано на применении метода дифференциала. Покажем, как можно получить формулу (41.3), применив схему II (метод дифференциала).

1. Возьмем произвольное значение  х є [а; b] и рассмотрим переменный отрезок [а;х]. На нем величина lстановится функцией от х, т.е. l = l(х) (l(а) = 0 и l(b) = l).

2. Находим дифференциал dl функции l = l(х) при изменении х на малую величину Δх = dx: dl = l'(x)dx. Найдем l'(x), заменяя бесконечно малую дугу MN хордой Δl, стягивающей эту дугу(см. рис. 185):

3. Интегрируя dl в пределах от а до b, получаем

Равенство называется формулой дифференциала дуги в прямоугольных координатах.

Так как у'х = -dy/dx, то

Последняя формула представляет собой  теорему Пифагора для бесконечно малого треугольника МСТ (см. рис. 186). 

 

Полярные координаты

Пусть кривая АВ задана уравнением в  полярных координатах r = r(φ), а≤φ≤β. Предположим, что r(φ) и r'(φ) непрерывны на отрезке [а;β].

Если в равенствах х = rcosφ, у = rsinφ, связывающих полярные и декартовы координаты, параметром считать угол φ, то кривую АВ можно задать параметрически

Тогда

Поэтому

Применяя формулу (41.5), получаем

Пример 41.5. Найти длину кардиоиды  r = = а(1 + cosφ).

Решение: Кардиоида r = а(1 + cosφ) имеет вид, изображенный на рисунке 187. Она симметрична относительно полярной оси. Найдем половину длины кардиоиды:

Таким образом, 1/2l= 4а. Значит, l= 8а. 

 

 

 

41.4. Вычисление объема  тела

Вычисление объема тела по известным  площадям параллельных сечений

Пусть требуется найти объем V тела, причем известны площади S сечений этого  тела плоскостями, перпендикулярными  некоторой оси, например оси Ох: S = S(x), а ≤ х ≤ b.

Применим схему II (метод дифференциала).

1. Через произвольную точку х є [a;b] проведем плоскость ∏, перпендикулярную оси Ох (см. рис. 188). Обозначим через S(x) площадь сечения тела этой плоскостью; S(x) считаем известной и непрерывно изменяющейся при изменении х. Через v(x) обозначим объем части тела, лежащее левее плоскости П. Будем считать, что на отрезке [а; х] величина v есть функция от х, т. е. v = v(x)  (v(a) = 0, v(b) = V).

2. Находим дифференциал dV функции v = v(x). Он представляет собой «элементарный слой» тела, заключенный между параллельными плоскостями, пересекающими ось Ох в точках х и х+Δх, который приближенно может быть принят за цилиндр с основанием S(x) и высотой dx. Поэтому дифференциал объема dV = S(x) dx.

3. Находим искомую величину V путем  интегрирования dA в пределах от а до В:

Полученная формула называется формулой объема тела по площади параллельных сечений. 

 

Пример 41.6. Найти объем эллипсоида

Решение: Рассекая эллипсоид плоскостью, параллельной плоскости Oyz и на расстоянии х от нее (-а≤х≤a), получим эллипс (см. рис. 189):

Площадь этого эллипса равна

Поэтому, поформуле (41.6), имеем

 

 

Объем тела вращения

Пусть вокруг оси Ох вращается криволинейная трапеция, ограниченная непрерывной линией у = ƒ(х)  0, отрезком а ≤ x ≤ b и прямыми х = а и х = b (см. рис. 190). Полученная от вращения фигура называется телом вращения. Сечение этого тела плоскостью, перпендикулярной оси Ох, проведенной через произвольную точку х оси Ох (х Î [а; b]), есть круг с радиусом у= ƒ(х). Следовательно, S(x)=πy2.

Применяя формулу (41.6) объема тела по площади параллельных сечений, получаем

Если криволинейная трапеция ограничена графиком не прерывной функциих=φ(у) ≥ 0 и прямыми х = 0, у = с,

у = d (с < d), то объем тела, образованного вращением этой трапеции вокруг оси Оу, по аналогии с формулой (41.7), равен

 

 

Пример 41.7. Найти объем тела, образованного  вращением фигуры, ограниченной линиями вокруг оси Оу (см. рис. 191).

Решение:По формуле (41.8) находим:

 

 

41.5. Вычисление площади  поверхности вращения

Пусть кривая АВ является графиком функции  у = ƒ(х) ≥ 0, где х є [а;b], а функция у = ƒ(х) и ее производная у'=ƒ'(х) непрерывны на этом отрезке.

Найдем площадь S поверхности, образованной вращением кривой АВ вокруг оси Ох.

Применим схему II (метод дифференциала).

1. Через произвольную точку х є [а; b] проведем плоскость ∏, перпендикулярную оси Ох. Плоскость ∏ пересекает поверхность вращения по окружности с радиусом у = ƒ(х) (см. рис. 192). Величина S поверхности части фигуры вращения, лежащей левее плоскости, является функцией от х, т. е. s=s(x) (s(a)=0 и s(b)=S).

2. Дадим аргументу х приращение Δх = dx. Через точку х + dx є [а; b] также проведем плоскость, перпендикулярную оси Ох. Функция s=s(x) получит приращение Аз, изображенного на рисунке в виде «пояска».

Найдем дифференциал площади ds, заменяя образованную между сечениями фигуру усеченным конусом, образующая которого равна dl, а радиусы оснований рав ны у и у+dy. Площадь его боковой поверхности равна ds=π(у+у+dy)•dl=2πуdl + πdydl. Отбрасывая произведение dydl как бесконечно малую высшего порядка, чем ds, получаем ds=2πуdl, или, так как

3. Интегрируя полученное равенство  в пределах от х = а до х = b, получаем

Если кривая АВ задана параметрическими уравнениями х = x(t),y=y(t), t≤ t ≤ t2, то формула (41.9) для площади поверхности вращения принимает вид

 

 

Пример 41.8. Найти площадь поверхности  шара радиуса R.

Информация о работе Схемы применения определенного интеграла