Применение логарифмов для познания окружающего мира

Автор работы: Пользователь скрыл имя, 12 Сентября 2013 в 15:16, доклад

Краткое описание

Если в 16 веке логарифмы появились как средство для упрощения вычислений, то нужны ли они сегодня, когда вычислительная техника достаточно развита, чтобы справляться с самыми сложными расчетами? Вопрос правомерен. Ведь не изучают же в современной школе такие старые средства для упрощения вычислений, как простейшие счетные приборы, не изучаются древние алгоритмы умножения и деления чисел, извлечения квадратных и кубических корней и пр

Вложенные файлы: 1 файл

применение логарифмов для познания окружающего мира.doc

— 31.50 Кб (Скачать файл)

Если в 16 веке логарифмы появились  как средство для упрощения вычислений, то нужны ли они сегодня, когда  вычислительная техника достаточно развита, чтобы справляться с  самыми сложными расчетами? Вопрос правомерен. Ведь не изучают же в современной  школе такие старые средства для упрощения вычислений, как простейшие счетные приборы, не  изучаются древние алгоритмы умножения и деления чисел, извлечения квадратных и кубических корней и пр. Так зачем изучают логарифмы сегодня? Попробуем ответить на этот интересный вопрос.

Во-первых, логарифмы и сегодня позволяют  упрощать вычисления.

Во-вторых, испокон веков целью математической науки было помочь людям узнать больше об окружающем мире, познать его  закономерности и  тайны.

Ряд явлений природы помогает описать  логарифмическая зависимость. Иначе говоря, математики, пытаясь составить математическую модель того или иного явления, достаточно часто обращаются именно к логарифмической функции.

Одним из наиболее наглядных примеров такого обращения является логарифмическая спираль. Спираль в одну сторону развертывается до бесконечности, а вокруг полюса, напротив, закручивается, стремясь к нему, но не достигая (приложение 3).

Так почему мы в качестве примера логарифмической  зависимости в природе выбрали  именно логарифмическую спираль?

Известно, что живые существа обычно растут, сохраняя общее начертание своей формы. При этом чаще всего  они растут во всех направлениях –  взрослое существо и выше и толще  детеныша. Но раковины морских животных могут расти лишь в одном направлении. Чтобы не слишком вытягиваться в длину, им приходится скручиваться, причем рост совершается так, что сохраняется подобие раковины с её первоначальной формой. А такой рост может совершаться лишь по логарифмической спирали или её некоторым пространственным аналогам. Поэтому раковины многих моллюсков, улиток, а также рога таких млекопитающих, как горные козлы

( архары), закручены по  логарифмической спирали (приложение 3).

Можно сказать, что эта  спираль является математическим символом соотношения формы и роста. Великий немецкий поэт Иоганн-Вольфганг Гёте считал её даже математическим символом жизни и духовного развития.

По логарифмической  спирали очерчены не только раковины. Один из наиболее распространенных пауков, эпейра, сплетая паутину, закручивает  нити вокруг центра по логарифмическим спиралям. В подсолнухе семечки расположены по дугам, близким к логарифмической спирали. По логарифмическим спиралям закручены и многие Галактики, в частности Галактика, которой принадлежит Солнечная система (приложение 3). Логарифмическая спираль знаменита не только тем, что её образы достаточно широко встречаются в природе, но и своими удивительными свойствами.

Неизменяемость спирали при  преобразовании подобия является основой  любопытного явления, состоящего в  том, что если лист бумаги с изображенной на нем логарифмической спиралью быстро поворачивать вокруг полюса по ходу часовой стрелки или против хода часовой стрелки, то можно наблюдать кажущее увеличение или уменьшение спирали.

В технике часто применяют вращающиеся  ножи. Сила, с которой они давят на разрезаемый материал, зависит от угла резанья, т.е. угла между лезвием ножа и направлением скорости вращения. Для постоянного давления нужно, чтобы угол резания сохранял постоянное значение, а это будет в том случае, если лезвия ножей очерчены по дуге логарифмической спирали. Величина угла резания зависит от  обрабатываемого материала.

Логарифмическая спираль – это замечательная  кривая, имеющая  много интересных свойств, но примеры логарифмической функции в природе на этом не ограничиваются. Поэтому рассмотрим еще несколько интересных фактов.

Известно, что астрономы распределяют звезды по степеням видимой яркости на светила  первой величины, второй величины, третьей и т.д. Последовательные звездные величины воспринимаются глазом как члены арифметической прогрессии. Но физическая яркость их изменяется по иному закону: объективные яркости составляют геометрическую прогрессию со знаменателем 2,5. Получается, что «величина» звезды представляет собой не что иное, как логарифм её физической яркости. Оценивая видимую яркость звёзд, астроном оперирует с таблицей логарифмов по основанию 2,5.

Практическая  аналогичная картина получается при оценивании громкости шума. Единицей громкости служит «бел» (в честь изобретателя А.Г.Бела), практически – его десятая доля, «децибел». Последовательные степени громкости 10 децибел, 20 децибел и т.д. составляют для нашего слуха арифметическую прогрессию. Физическая же «сила» этих шумов (точнее – энергия) составляет геометрическую прогрессию со знаменателем 10. Громкость шума, выраженная в белах, равна десятичному логарифму его физической силы. Рассмотрим этот вопрос подробнее. Если мы будем слушать звуки различных частот, но одинаковой силы, то они покажутся нам отличающимися по громкости. То есть наше ухо с разной чувствительностью воспринимает звуки различной частоты. Если увеличивать силу какого-нибудь звука в 2,3,4 раза, то наше звуковое ощущение (громкость звука) во столько же раз не увеличивается. Тихий шелест листьев оценивается в 1 бел, громкая разговорная речь – в 6,5 бела, рычание льва – в 807 бела. Но разности громкостей в 1 бел отвечает отношение силы шумов равное 10.

По  силе звука разговорная речь превышает шелест листьев в 106,5-1 = 105,5 » 31600 раз, львиное рычание в 108,7-6,5 =102,2 » 158 раз.

При оценке видимой яркости светил и  при  измерении громкости шума, мы имеем дело с логарифмической зависимостью между величиной ощущения и порождающего его раздражения. Оказывается, что оба эти явления – следствия общего психофизического закона Вебера-Фехнера, согласно которому ощущение изменяется пропорционально логарифму раздражения. Как видно, логарифмы вторгаются и в область психологии.

Теперь  рассмотрим еще один интереснейший пример о связи логарифмов и музыки. Нажимая на клавиши современного рояля, мы, можно сказать, играем на логарифмах Действительно, так называемые «ступени» темперированной хроматической гаммы не расставлены на равных расстояниях ни по отношению к числу колебаний, ни по отношению к длинам волн соответствующих звуков, а представляют собой логарифмы этих величин. И основание этих логарифмов равно 2.  

 

http://s_2_petrop.ven.edu54.ru/p89aa1.html


Информация о работе Применение логарифмов для познания окружающего мира