История теории вероятностей

Автор работы: Пользователь скрыл имя, 23 Ноября 2013 в 20:43, доклад

Краткое описание

Теория вероятностей — сравнительно молодая ветвь математики. Ее развитие как самостоятельной науки началось с переписки Паскаля и Ферма в 1654 году, хотя значительно раньше этих ученых многие математики занимались задачами, относящимися к азартным играм. Так, например, Лука Пачиоли (1445 — 1514) в своей книге «Summa de Arithmetica, Geometria, Proportioni e Proortiona1ita» рассматривал одну задачу о вероятностях, но пришел к ошибочному решению. Однако уже Кардано (1501 — 1576) и Галилей (1564 — 1642) правильно решали специальные теоретико-вероятностные задачи.

Вложенные файлы: 1 файл

Теория вероятностей.doc

— 286.00 Кб (Скачать файл)

Теория вероятностей — сравнительно молодая ветвь  математики. Ее развитие как самостоятельной  науки началось с переписки Паскаля  и Ферма в 1654 году, хотя значительно  раньше этих ученых многие математики занимались задачами, относящимися к  азартным играм. Так, например, Лука Пачиоли (1445 — 1514) в своей книге «Summa de Arithmetica, Geometria, Proportioni e Proortiona1ita» рассматривал одну задачу о вероятностях, но пришел к ошибочному решению. Однако уже Кардано (1501 — 1576) и Галилей (1564 — 1642) правильно решали специальные теоретико-вероятностные задачи.

Понятие вероятности восходит к  древним временам; оно было известно уже античным философам (вспомним, что  во втором письме приведена цитата из Платона). Мысль о том, что законы природы проявляются через множество случайных событий, впервые возникла у древнегреческих материалистов. Ее подробное изложение дано в поэме Лукреция Кара «О природе вещей», важнейшие отрывки из которой цитируются в беседе Паскаля и Митона (и в примечаниях), приводимой в четвертом письме. В развитии теории вероятностей весьма большую роль играли задачи, связанные с азартными играми, в первую очередь с игрой в кости. Уже в древности игра в кости была популярна и любима.

В 1658 году появилась книга Христиана  Гюйгенса (1629 — 1695) «О расчетах в азартных играх» («De ratiociniis in ludo aleae»), в которой давалось подробное изложение вопросов, рассмотренных Ферма и Паскалем (автор явно опирался на переписку этих двух ученых), но, кроме того, им было выдвинуто и много аналогичных вопросов. С работой Гюйгенса непосредственно связана основная работа Якоба Бернулли (1654 — 1705) «Искусство догадок» («Ars conjectandi»), которая была опубликована лишь после его смерти в 1713 году. В первой части своего труда Бернулли воспроизводит и комментирует книгу Гюйгенса, приводит полные решения тех вопросов, которые Гюйгенс поставил, но не решил. Однако важнейшей частью книги является четвертая, в которой изложен закон больших чисел. Произведение Монморта (1678 — 1719) «Опыт анализа азартных игр» («Essai d'analyse sur les jeux de hazard»), написанное несколько позже, чем «Искусство догадок» Бернулли, появилось раньше (в 1708 году). Оно также опирается на книгу Гюйгенса и тем самым косвенно связано с перепиской Паскаля и Ферма. То же можно сказать и относительно важнейшей работы Абрахама де Муавра (1667 — 1754) «Об измерении случайности, или о вероятностях результатов в азартных играх» («De Мепзига mortis seu de Probabilitate Eventuum in Ludis а Casu Fortuito Pendentibus»), которая была опубликована в журнале Philosophical Transactions в 1711 году.

Наряду с задачами азартных игр  уже в самом начале возникновения  теории вероятностей появились задачи, связанные с составлением таблиц смертности и вопросами страхования. В Лондоне уже с 1592 года велись точные записи о смертности. На основе этих записей Джон Граунт (1620 — 1674) в 1662 году впервые составил таблицы вероятности смерти как функции возраста. Несколькими годами позднее Ван Худде и Ван де Витт в Голландии, проделав аналогичные расчеты, использовали их для вычисления пожизненной ренты. Подробнее эти вопросы в 1693 году были изложены Галлеем. Не доказано, но вполне естественно предположить, что уже Паскаль обратил внимание на связь теории вероятностей с закономерностями смертности и страхованием.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Развитие теории вероятностей, а  с нею и развитие понятия вероятности  можно разбить на следующие этапы. СЛАЙД 10.

 
 
Д. Кардано 

 
1. Предыстория теории вероятностей.  СЛАЙД 11. В этот период, начало которого теряется в веках, ставились и решались элементарные задачи, которые позже будут отнесены к теории вероятностей. Никаких специальных методов в этот период не возникает. Этот период кончается работами Кардано,  Пачоли, Тарталья и др. С вероятностными представлениями мы встречаемся еще в античности. У Демокрита, Лукреция Кара и других античных ученых и мыслителей мы находим глубокие предвидения о строении материи с беспорядочным движением мелких частиц (молекул), мы встречаем рассуждения о равновозможных исходах (равновероятных) и т. п.  
 
Еще  в древности делались попытки сбора и анализа некоторых статистических материалов — все это (а также и другие проявления внимания к случайным явлениям} создавало почву для выработки новых научных понятий, в том числе и понятия вероятности. 
 
Но античная наука не дошла до выделения этого понятия. В философии вопрос о случайном, необходимом и возможном  всегда был одним из основных. Философская разработка этих проблем также оказывала влияние на формирование понятия вероятности. 
 
В целом в средневековье мы наблюдаем только разрозненные попытки осмыслить встречающиеся вероятностные рассуждения.

 
 
Н. Тарталья


 

 
^ 2. Возникновение теории вероятностей как науки.  СЛАЙД 12-13. К середине, XVII в. вероятностные вопросы и проблемы, возникающие в статистической практике, в практике страховых обществ, при обработке результатов наблюдений и в других областях, привлекли  внимание ученых, так как они стали актуальными вопросами. В первую очередь это относится к        Б. Паскалю, П. Ферма и X. Гюйгенсу. СЛАЙД 5. В этот период вырабатываются первые специфические понятия, такие, как математическое ожидание и вероятность (в форме отношения шансов), устанавливаются и используются первые свойства вероятности: теоремы сложения и умножения вероятностей. В это время теория вероятностей находит свои первые применения в демографии, страховом деле, в оценке ошибок наблюдения, широко используя при этом понятие вероятности. 
 
^ 3. Следующий период начинается с появления работы Я. Бернулли "Искусство предположений" (1713), в которой впервые была  строго доказана первая предельная теорема — простейший случай закона больших чисел. СЛАЙД14. К этому периоду, который продолжался до середины XIX в., относятся работы Муавра, Лапласа, Гаусса и др. В центре внимания в это время стоят предельные теоремы. Теория вероятностей начинает широко применяться в различных областях естествознания. И хотя в этот период начинают применяться различные понятия вероятности (геометрическая вероятность, статистическая вероятность), господствующее положение занимает, в особенности после работ Лапласа, так называемое классическое определение вероятности. 
 
^ 4. Следующий период развития теории вероятностей связан прежде всего с Петербургской математической школой. СЛАЙД 15. За два столетия развития теории вероятностей главными ее достижениями были предельные теоремы. Но не были выяснены границы их применимости и возможности дальнейшего обобщения. Наряду с огромными  успехами, достигнутыми теорией вероятностей в предыдущий период, были выявлены и существенные недостатки в ее обосновании, это в большой мере относится к недостаточно четким представлениям о вероятности. 
 
В теории вероятностей создалось положение, когда дальнейшее ее развитие требовало уточнения основных положений, усиления самих методов исследования. Это было осуществлено русской математической школой во главе с П. Л. Чебышевым. Среди ее крупнейших представителей мы видим А. А. Маркова и А. М. Ляпунова. В этот период в теорию вероятностей входят оценки приближений предельных теорем, а также происходит расширение класса случайных величин, подчиняющихся предельным теоремам. В это время в теории вероятностей начинают рассматривать некоторые зависимые случайные величины (цепи Маркова). 
 
Понятие вероятности получило  большое распространение в естественных науках, в первую очередь это относится к физике. Появляются работы Максвелла, а затем Больцмана и Д. Гиббса. Их трудами создается статистическая физика. Но это внедрение вероятностных методов и понятий в физику шло в довольно большом отрыве от достижений теории вероятностей. 
 
Развитие теории вероятностей в начале ХХ в. привело к необходимости пересмотра и уточнения ее логических  основ, в первую очередь понятия вероятности. Следует иметь в виду и то, что к началу ХХ в. аксиоматический метод стал проникать во многие области математики (работы Д. Гильберта, Пеано и др.), что также оказало влияние на теорию вероятностей. В результате всего этого возникла необходимость аксиоматизации теории вероятностей и ее основного понятия — вероятности. 
 
^ 5. Современный период развития теории вероятностей начался с установления аксиоматики. СЛАЙД 16-17. Этого прежде всего требовала практика, так как для успешного применения теории вероятностей в физике, биологии и других областях науки, а также в технике и военном деле необходимо было уточнить и привести в стройную систему ее основные понятия. Благодаря аксиоматике теория вероятностей стала абстрактно-дедуктивной математической дисциплиной, тесно связанной с другими математическими дисциплинами. Это обусловило небывалую широту исследований по теории вероятностей и ее применениям, начиная от хозяйственно-прикладных вопросов и кончая самыми тонкими теоретическими вопросами теории информации и теории случайных процессов. 
 
Первые работы этого периода связаны с именами С. Н, Бернштейна, Р. Мизеса, Э. Бореля. Окончательное установление аксиоматики произошло в 30-е годы ХХ в. Анализ тенденций развития теории вероятностей позволил А. Н. Колмогорову создать общепринятую аксиоматику. 
 
В этот период понятие вероятности проникает почти во все сферы человеческой деятельности, становясь одним из основных понятий современной науки. Возникают самые различные определения вероятности, несводимые друг к другу. Многообразие определений основных понятий — существенная черта современной науки, и понятие вероятности не исключение.

 

Элементы теории игр 
 
Основные понятия. Игры в чистых стратегиях     

 Во многих экономических  задачах часто возникают ситуации, когда две или более сторон  разрешают одну и ту же проблему, но преследуют различные цели, их интересы противоположны.  Подобные ситуации называются конфликтными. Примерами таких ситуаций служат отношения между продавцом и покупателем, адвокатом и прокурором, кредитором и дебитором, истцом и ответчиком и т.д. 
     Математические методы анализа конфликтных ситуаций объединяются под названием теории игр, сама конфликтная ситуация носит название игры, а стороны, участвующие в конфликте, называются игроками. Исход игры называется выигрышем (или проигрышем) игроков. Если в игре участвуют только два игрока, то игра называется парной. Будем рассматривать в дальнейшем только парные игры. Если выигрыш одного игрока равен проигрышу другого, то игра называется антагонистической.  
     Рассмотрим следующую модель. Игрок А желает принять решение, на результат которого влияет другой игрок В, цели которого противоположны А. Игрок В анализирует все возможные варианты А и принимает такое решение, которое приводит к наименьшему выигрышу А (соответственно максимальному своему выигрышу).  
     Пусть игрок А может выбрать в качестве действий одну из п альтернатив (вариантов) своих возможных действий: А1, А2,…, Аn. Эти альтернативы в теории игр принято называть стратегиями. Аналогично, игрок В может принять одну из m своих стратегий В1, В2,…, Вm. Предположим, что известны выигрыши (проигрыши) игрока А при любой выбранной им стратегии Аi и любом ответе ему игроком В – стратегии Вj. Пусть этот результат выражен числом аij (которое может быть и отрицательным в случае проигрыша А). Величины аij образуют матрицу: 
    

 

В1

В2

Вm

А1

a11

a12

a1m

А2

a21

a21

a2m

   

 

Аn

an1

an2

anm


 
     Эта матрица называется платежной или матрицей игры.  
     Рассмотрим игру со стороны А. Он, выбирая свою стратегию Аi, понимает, что В ответит ему такой стратегией Вj, чтобы выигрыш А был минимальным. Поэтому, из всех наихудших вариантов (минимальных элементов каждой строки платежной матрицы) , игроку А выгодно выбрать стратегию, соответствующую максимальному из этих элементов: 
     . 
     Величина a называется нижнейценой игры или максимином. Это гарантированный выигрыш игрока А. С другой стороны, игрок В выбирая свою стратегию Вj понимает, что игрок А ответит такой стратегией Аi, чтобы его выигрыш был максимален. Поэтому из наилучших вариантов для А (максимальных элементов каждого столбца)  игроку В рационально выбрать свою стратегию, соответствующую минимальному из этих чисел: 
     . 
     Величина β называется верхней ценой игры или минимаксом. Это максимальный проигрыш игрока В. Реальный результат решения конфликтной ситуации, называемый ценой игры n, заключен между верхней и нижней ценой: . В случае, если верхняя и нижняя цены совпадают , то игра имеет решение в чистых стратегиях, то есть можно точно определить стратегии , которые выгодны для обоих сторон. Если одна сторона отойдет от своей оптимальной стратегии, то ее выигрыш от этого только уменьшится.  
     Пример: Дебитор А желает выбрать один из четырех условий займа: А1, А2, А3, А4. Кредитор может на любой вариант займа ответить вариантом предоставления кредита В1, В2, В3, В4, В5. Процентные ставки для дебитора при любом варианте кредитора представлены платежной матрицей:

 

В1

В2

В3

В4

В5

А1

6

1

8

7

4

А2

4

3

2

6

5

А3

3

7

6

9

8

А4

2

6

7

8

3


 
     Находим минимальные элементы  каждой строки платежной матрицы  αI и из них находим максимальное значение. Из максимальных элементов каждого столбца βj выбираем минимальный.

 

В1

В2

В3

В4

В5

αi

А1

6

1

8

4

4

1

А2

9

6

7

5

8

5

А3

3

7

6

2

8

2

А4

2

6

7

3

3

2

βj

9

7

8

5

8

 

 
     Видно, что верхние и нижние цены игры совпадают , следовательно для обоих игроков выгодны стратегии  и процентная ставка, равная 5. При принятии игроками иной стратегии, отличной от оптимальной, этот игрок только проиграет.  

Решение игр в смешанных  стратегиях    

 Рассмотрим теперь ситуацию, когда верхняя и нижняя цены  не совпадают  . В этом случае игра решается в смешанных стратегиях. Смешанный стратегии предполагают, что каждый игрок будет выбирать случайно из возможно допустимых чистых стратегий (но выбирать их с вероятностями), либо частично реализовывать чистые стратегии в заданных пропорциях. Нахождение этих вероятностей (или пропорций) и является решением игры. Таким образом, в общем виде, решением игры являются смешанные стратегии  и , где  и  - вероятности чистых стратегий  в смешанной.  
     Рассмотрим сначала простейший случай игры, решаемой в смешанных стратегиях – игру 2х2, когда у каждого игрока имеется лишь по две стратегии. Платежная матрица такой игры есть:

 

B1

B2

A1

a11

a12

A2

a21

a22


 
     Решение игры   и , где , , , . Цена игры равна .  
     Пример. Игрок А прячет в одной из рук монету. Игрок В пытается угадать руку с монетой. Если В не угадывает, то А получает от В 1 у.е. Если В угадывает руку с монетой и эта рука правая, то он получает от А 1 у.е. Если В находит монету в левой руке, то он получает от А 2 у.е. Определить оптимальные стратегии поведения для каждого игрока и средний выигрыш для А.  
     Пусть стратегии игроков: А1 – спрятать в правой; В1 – искать в правой; А2 – спрятать в левой; В2 – искать в левой.  Игровая матрица для данной ситуации относительно игрока А имеет вид: 
    

Информация о работе История теории вероятностей