История математики

Автор работы: Пользователь скрыл имя, 27 Апреля 2012 в 11:31, реферат

Краткое описание

Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом пальцы рук и ног. Наскальный рисунок, сохранившийся до наших времен от каменного века, изображает число 35 в виде серии выстроенных в ряд 35 палочек-пальцев. Первыми существенными успехами в арифметике стали концептуализация числа и изобретение четырех основных действий: сложения, вычитания, умножения и деления. Первые достижения геометрии связаны с такими простыми понятиями, как прямая и окружность. Дальнейшее развитие математики началось примерно в 3000 до н. э. благодаря вавилонянам и египтянам.

Вложенные файлы: 1 файл

История математики.doc

— 127.50 Кб (Скачать файл)

Начало современной математики

Наступление 16 в. в Западной Европе ознаменовалось важными достижениями в алгебре и арифметике. Были введены в обращение десятичные дроби и правила арифметических действий с ними. Настоящим триумфом стало изобретение в 1614 логарифмов Дж. Непером. К концу 17 в. окончательно сложилось понимание логарифмов как показателей степени с любым положительным числом, отличным от единицы, в качестве основания. С начала 16 в. более широко стали употребляться иррациональные числа. Б. Паскаль (1623 – 1662) и И. Барроу (1630 – 1677), учитель И. Ньютона в Кембриджском университете, утверждали, что такое число, как корень из двух, можно трактовать лишь как геометрическую величину. Однако в те же годы Р. Декарт (1596 – 1650) и Дж. Валлис (1616 – 1703) считали, что иррациональные числа допустимы и сами по себе, без ссылок на геометрию. В 16 в. продолжались споры по поводу законности введения отрицательных чисел. Еще менее приемлемыми считались возникавшие при решении квадратных уравнений комплексные числа, такие как названные Декартом "мнимыми". Эти числа были под подозрением даже в 18 в., хотя Л. Эйлер (1707 – 1783) с успехом пользовался ими. Комплексные числа окончательно признали только в начале 19 в., когда математики освоились с их геометрическим представлением.

Достижения в алгебре

В 16 в. итальянские математики Н. Тарталья (1499 – 1577), С. Даль Ферро (1465 – 1526), Л. Феррари (1522 – 1565) и Д. Кардано (1501 – 1576) нашли общие решения уравнений третьей и четвертой степеней. Чтобы сделать алгебраические рассуждения и их запись более точными, было введено множество символов, в том числе "+", "–", "=", ">" и "<". Самым существенным новшеством стало систематическое использование французским математиком Ф. Виетом (1540 – 1603) букв для обозначения неизвестных и постоянных величин. Это нововведение позволило ему найти единый метод решения уравнений второй, третьей и четвертой степеней. Затем математики обратились к уравнениям, степени которых выше четвертой. Работая над этой проблемой, Кардано, Декарт и И. Ньютон (1643 – 1727) опубликовали (без доказательств) ряд результатов, касающихся числа и вида корней уравнения. Ньютон открыл соотношение между корнями и дискриминантом [b2 – 4ac] квадратного уравнения, а именно, что уравнение ax2 + bx + c = 0 имеет равные действительные, разные действительные или комплексно сопряженные корни в зависимости оттого, будет ли дискриминант b2 – 4ac равен нулю, больше или меньше нуля. В 1799 К. Фридрих Гаусс (1777 – 1855) доказал т. н. основную теорему алгебры: каждый многочлен n-й степени имеет ровно n корней.

Основная задача алгебры — поиск общего решения алгебраических уравнений — продолжала занимать математиков и в начале 19 в. Когда говорят об общем решении уравнения второй степени ax2 + bx + c = 0, имеют в виду, что каждый из двух его корней может быть выражен с помощью конечного числа операций сложения, вычитания, умножения, деления и извлечения корней, производимых над коэффициентами a, b и с. Молодой норвежский математик Н. Абель (1802 – 1829) доказал, что невозможно получить общее решение уравнения степени выше 4 с помощью конечного числа алгебраических операций. Однако существует много уравнений специального вида степени выше 4, допускающих такое решение. Накануне своей гибели на дуэли юный французский математик Э. Галуа (1811 – 1832) дал решающий ответ на вопрос о том, какие уравнения разрешимы в радикалах, т. е. корни каких уравнений можно выразить через их коэффициенты с помощью конечного числа алгебраических операций. В теории Галуа использовались подстановки или перестановки корней, и было введено понятие группы, которое нашло широкое применение во многих областях математики.

Развитие теории групп служит хорошим примером преемственности творческой работы в математике. Галуа построил свою теорию, опираясь на работу Абеля, Абель опирался на работу Ж. Лагранжа (1736 – 1813). В свою очередь многие выдающиеся математики, в том числе Гаусс и А. Лежандр (1752 – 1833) в своих работах неявно использовали понятие группы. Ньютон не был чрезмерно скромен, когда заявил: "Если я видел дальше других, то потому, что стоял на плечах гигантов".

Аналитическая геометрия

Аналитическая, или координатная, геометрия была создана независимо П. Ферма (1601 – 1665) и Р. Декартом для того, чтобы расширить возможности евклидовой геометрии в задачах на построение. Однако Ферма рассматривал свои работы лишь как переформулировку сочинения Аполлония. Подлинное открытие — осознание всей мощи алгебраических методов — принадлежит Декарту. Евклидова геометрическая алгебра для каждого построения требовала изобретения своего оригинального метода и не могла предложить количественную информацию, необходимую науке. Декарт решил эту проблему: он формулировал геометрические задачи алгебраически, решал алгебраическое уравнение и лишь затем строил искомое решение — отрезок, имевший соответствующую длину. Собственно аналитическая геометрия возникла, когда Декарт начал рассматривать неопределенные задачи на построение, решениями которых является не одна, а множество возможных длин.

Аналитическая геометрия использует алгебраические уравнения для представления и исследования кривых и поверхностей. Декарт считал приемлемой кривую, которую можно записать с помощью единственного алгебраического уравнения относительно х и у. Такой подход был важным шагом вперед, ибо он не только включил в число допустимых такие кривые, как конхоида и циссоида, но также существенно расширил область кривых. В результате, в 17 – 18 вв. множество новых важных кривых, таких как циклоида и цепная линия, вошли в научный обиход.

По-видимому, первым математиком, который воспользовался уравнениями для доказательства свойств конических сечений, был Дж. Валлис. К 1865 он алгебраическим путем получил все результаты, представленные в V книге "Начал" Евклида.

Аналитическая геометрия полностью поменяла ролями геометрию и алгебру. Как заметил великий французский математик Лагранж, "пока алгебра и геометрия двигались каждая своим путем, их прогресс был медленным, а приложения ограниченными. Но когда эти науки объединили свои усилия, они позаимствовали друг у друга новые жизненные силы и с тех пор быстрыми шагами направились к совершенству".

Математический анализ

Основатели современной науки — Коперник, Кеплер, Галилей и Ньютон — подходили к исследованию природы как математики. Исследуя движение, математики выработали такое фундаментальное понятие, как функция, или отношение между переменными, например d = kt2, где d — расстояние, пройденное свободно падающим телом, а t — число секунд, которое тело находится в свободном падении. Понятие функции сразу же стало центральным в определении скорости в данный момент времени и ускорения движущегося тела. Математическая трудность этой проблемы заключалась в том, что в любой момент тело проходит нулевое расстояние за нулевой промежуток времени. Поэтому, определяя значение скорости в момент времени делением пути на время, мы придем к математически бессмысленному выражению 0/0.

Задача определения и вычисления мгновенных скоростей изменения различных величин привлекала внимание почти всех математиков 17 в., включая Барроу, Ферма, Декарта и Валлиса. Предложенные ими разрозненные идеи и методы были объединены в систематический, универсально применимый формальный метод Ньютоном и Г. Лейбницем (1646 – 1716), создателями дифференциального исчисления. По вопросу о приоритете в разработке этого исчисления между ними велись горячие споры, причем Ньютон обвинял Лейбница в плагиате. Однако, как показали исследования историков науки, Лейбниц создал математический анализ независимо от Ньютона. В результате конфликта обмен идеями между математиками континентальной Европы и Англии на долгие годы оказался прерванным с ущербом для английской стороны. Английские математики продолжали развивать идеи анализа в геометрическом направлении, в то время как математики континентальной Европы, в том числе И. Бернулли (1667 – 1748), Эйлер и Лагранж достигли несравненно больших успехов, следуя алгебраическому, или аналитическому, подходу.

Основой всего математического анализа является понятие предела. Скорость в момент времени определяется как предел, к которому стремится средняя скорость d/t, когда значение t все ближе подходит к нулю. Дифференциальное исчисление дает удобный в вычислениях общий метод нахождения скорости изменения функции f(x) при любом значении х. Эта скорость получила название производной. Из общности записи f(x) видно, что понятие производной применимо не только в задачах, связанных с необходимостью найти скорость или ускорение, но и по отношению к любой функциональной зависимости, например, к какому-нибудь соотношению из экономической теории. Одним из основных приложений дифференциального исчисления являются т. н. задачи на максимум и минимум; другой важный круг задач — нахождение касательной к данной кривой.

Оказалось, что с помощью производной, специально изобретенной для работ с задачами движения, можно также находить площади и объемы, ограниченные соответственно кривыми и поверхностями. Методы евклидовой геометрии не обладали должной общностью и не позволяли получать требуемые количественные результаты. Усилиями математиков 17 в. были созданы многочисленные частные методы, позволявшие находить площади фигур, ограниченных кривыми того или иного вида, и в некоторых случаях была отмечена связь этих задач с задачами на нахождение скорости изменения функций. Но, как и в случае дифференциального исчисления, именно Ньютон и Лейбниц осознали общность метода и тем самым заложили основы интегрального исчисления.

Метод Ньютона-Лейбница начинается с замены кривой, ограничивающей площадь, которую требуется определить, приближающейся к ней последовательностью ломаных, аналогично тому, как это делалось в изобретенном греками методе исчерпывания. Точная площадь равна пределу суммы площадей n прямоугольников, когда n обращается в бесконечность. Ньютон показал, что этот предел можно найти, обращая процесс нахождения скорости изменения функции. Операция, обратная дифференцированию, называется интегрированием. Утверждение о том, что суммирование можно осуществить, обращая дифференцирование, называется основной теоремой математического анализа. Подобно тому, как дифференцирование применимо к гораздо более широкому классу задач, чем поиск скоростей и ускорений, интегрирование применимо к любой задаче, связанной с суммированием, например, к физическим задачам на сложение сил.

Современная математика

Создание дифференциального и интегрального исчислений ознаменовало начало "высшей математики". Методы математического анализа, в отличие от понятия предела, лежащего в его основе, выглядели ясными и понятными. Многие годы математики, в том числе Ньютон и Лейбниц, тщетно пытались дать точное определение понятию предела. И все же, несмотря на многочисленные сомнения в обоснованности математического анализа, он находил все более широкое применение. Дифференциальное и интегральное исчисления стали краеугольными камнями математического анализа, который со временем включил в себя и такие предметы, как теория дифференциальных уравнений, обыкновенных и с частными производными, бесконечные ряды, вариационное исчисление, дифференциальная геометрия и многое другое. Строгое определение предела удалось получить лишь в 19 в.

Неевклидова геометрия

К 1800 математика покоилась на двух "китах" — на числовой системе и евклидовой геометрии. Так как многие свойства числовой системы доказывались геометрически, евклидова геометрия была наиболее надежной частью здания математики. Тем не менее, аксиома о параллельных содержала утверждение о прямых, простирающихся в бесконечность, которое не могло быть подтверждено опытом. Даже версия этой аксиомы, принадлежащая самому Евклиду, вовсе не утверждает, что какие-то прямые не пересекутся. В ней, скорее, формулируется условие, при котором они пересекутся в некоторой конечной точке. Столетиями математики пытались найти аксиоме о параллельных соответствующую подходящую замену. Но в каждом варианте непременно оказывался какой-нибудь пробел. Честь создания неевклидовой геометрии выпала Н. И. Лобачевскому (1792 – 1856) и Я. Бойяи (1802 – 1860), каждый из которых независимо опубликовал свое собственное оригинальное изложение неевклидовой геометрии. В их геометриях через данную точку можно было провести бесконечно много параллельных прямых. В геометрии Б. Римана (1826 – 1866) через точку вне прямой нельзя провести ни одной параллельной.

О физических приложениях неевклидовой геометрии никто серьезно не помышлял. Создание А. Эйнштейном (1879 – 1955) общей теории относительности в 1915 пробудило научный мир к осознанию реальности неевклидовой геометрии.

Неевклидова геометрия стала наиболее впечатляющим интеллектуальным свершением 19 в. Она ясно продемонстрировала, что математику нельзя более рассматривать как свод непререкаемых истин. В лучшем случае математика может гарантировать достоверность доказательства на основе недостоверных аксиом. Но зато математики впредь обрели свободу исследовать любые идеи, которые могли показаться им привлекательными. Каждый математик в отдельности был теперь волен вводить свои собственные новые понятия и устанавливать аксиомы по своему усмотрению, следя лишь за тем, чтобы проистекающие из аксиом теоремы не противоречили друг другу. Грандиозное расширение круга математических исследований в конце прошлого века по существу явилось следствием этой новой свободы.

Математическая строгость

Примерно до 1870 математики пребывали в убеждении, что действуют по предначертаниям древних греков, применяя дедуктивные рассуждения к математическим аксиомам, тем самым обеспечивая своими заключениями не меньшую надежность, чем та, которой обладали аксиомы. Неевклидова геометрия и кватернионы (алгебра, в которой не выполняется свойство коммутативности) заставили математиков осознать, что то, что они принимали за абстрактные и логически непротиворечивые утверждения, в действительности зиждется на эмпирическом и прагматическом базисе.

Создание неевклидовой геометрии сопровождалось также осознанием существования в евклидовой геометрии логических пробелов. Одним из недостатков евклидовых "Начал" было использование допущений, не сформулированных в явном виде. По-видимому, Евклид не подвергал сомнению те свойства, которыми обладали его геометрические фигуры, но эти свойства не были включены в его аксиомы. Кроме того, доказывая подобие двух треугольников, Евклид воспользовался наложением одного треугольника на другой, неявно предполагая, что при движении свойства фигур не изменяются. Но кроме таких логических пробелов, в "Началах" оказалось и несколько ошибочных доказательств.

Создание новых алгебр, начавшееся с квартернионов, породило аналогичные сомнения и в отношении логической обоснованности арифметики и алгебры обычной числовой системы. Все ранее известные математикам числа обладали свойством коммутативности, т. е. ab = ba. Кватернионы, совершившие переворот в традиционных представлениях о числах, были открыты в 1843 У. Гамильтоном (1805 – 1865). Они оказались полезными для решения целого ряда физических и геометрических проблем, хотя для кватернионов не выполнялось свойство коммутативности. Квартернионы вынудили математиков осознать, что если не считать посвященной целым числам и далекой от совершенства части евклидовых "Начал", арифметика и алгебра не имеют собственной аксиоматической основы. Математики свободно обращались с отрицательными и комплексными числами и производили алгебраические операции, руководствуясь лишь тем, что они успешно работают. Логическая строгость уступила место демонстрации практической пользы введения сомнительных понятий и процедур.

Почти с самого зарождения математического анализа неоднократно предпринимались попытки подвести под него строгие основания. Математический анализ ввел два новых сложных понятия — производная и определенный интеграл. Над этими понятиями бились Ньютон и Лейбниц, а также математики последующих поколений, превратившие дифференциальное и интегральное исчисления в математический анализ. Однако, несмотря на все усилия, в понятиях предела, непрерывности и дифференцируемости оставалось много неясного. Кроме того, выяснилось, что свойства алгебраических функций нельзя перенести на все другие функции. Почти все математики 18 в. и начала 19 в. предпринимали усилия, чтобы найти строгую основу для математического анализа, и все они потерпели неудачу. Наконец, в 1821, О. Коши (1789 – 1857), используя понятие числа, подвел строгую базу под весь математический анализ. Однако позднее математики обнаружили у Коши логические пробелы. Желаемая строгость была, наконец, достигнута в 1859 К. Вейерштрассом (1815 – 1897).

Информация о работе История математики