Энергетика будущего

Автор работы: Пользователь скрыл имя, 25 Января 2012 в 20:51, реферат

Краткое описание

Одной из фундаментальных проблем, состоящих перед человечеством, является энергетическая проблема. В настоящее время, прогнозные запасы традиционных источников энергии угля, нефти и газа оцениваются, соответственно, в 15 трлн.т , 500 млрд. т и 400 трлн. м3. При современном уровне добычи разведанных запасов угля хватит на 400 лет, нефти на 42 года и газа на 61 год. Мировая энергетическая система стоит перед лицом гигантских проблем. Поэтому, стремительное истощение природных энергоносителей выводит задачу поиска принципиально новых способов получения энергии на первый план и в ближайшей перспективе должна снижаться роли нефти, природного газа и угля.

Содержание

Введение 3
1 Солнечная энергия 5
2 Энергия ветра 8
3 Геотермальная энергия 11
4 Энергия мирового океана 14
5 Энергия биомассы 19
6 Атомная энергетика 20
7 Энергия вращения 22
8 Электрическое поле земли 23
Заключение 25
Список использованной литературы 26

Вложенные файлы: 1 файл

Реферат готовый.docx

— 51.70 Кб (Скачать файл)

     Новейшие  исследования направлены преимущественно  на получение электрической энергии из энергии ветра. Стремление освоить производство ветроэнергетических машин привело к появлению на свет множества таких агрегатов. Некоторые из них достигают десятков метров в высоту, и, как полагают, со временем они могли бы образовать настоящую электрическую сеть. Малые ветроэлектрические агрегаты предназначены для снабжения электроэнергией отдельных домов.

     Сооружаются ветроэлектрические станции преимущественно  постоянного тока. Ветряное колесо приводит в движение динамо-машину – генератор электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы.

     Сегодня ветроэлектрические агрегаты надежно  снабжают током нефтяников; они успешно  работают в труднодоступных районах, на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования.

     Основное  направление использования энергии  ветра – получение электроэнергии для автономных потребителей, а также механической энергии для подъема воды в засушливых районах, на пастбищах, осушения болот и др. В местностях, имеющих подходящие ветровые режимы, ветроустановки в комплекте с аккумуляторами можно применять для питания автоматических метеостанций, сигнальных устройств, аппаратуры радиосвязи, катодной защиты от коррозии магистральных трубопроводов и др.

     По  оценкам специалистов, энергию ветра  можно эффективно использовать там, где без существенного хозяйственного ущерба допустимы кратковременные  перерывы в подаче энергии. Использование  же ветроустановок с аккумулированием энергии позволяет применять  их для снабжения энергией практически  любых потребителей.

     Мощные  ветровые установки стоят обычно в районах с постоянно дующими  ветрами (на морских побережьях, в мелководных прибрежных зонах и т.д.) Такие установки уже используют в России, США, Канаде, Франции и других странах.

     Широкому  применению ветроэлектрических агрегатов  в обычных условиях пока препятствует их высокая себестоимость. Вряд ли требуется  говорить, что за ветер платить не нужно, однако машины, нужные для того, чтобы запрячь его в работу, обходятся слишком дорого.

     При использовании ветра возникает  серьезная проблема: избыток энергии  в ветреную погоду и недостаток её в периоды безветрия. Как же накапливать  и сохранить впрок энергию ветра? Простейший способ состоит в том, что ветряное колесо движет насос, который накапливает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветроагрегата разлагает воду на кислород и водород, Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  1. Геотермальная энергия
 

     Издавна люди знают о стихийных проявлениях  гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится – нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это - проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

     Энергетика  земли (геотермальная энергетика) базируется на использовании природной теплоты  Земли. Недра Земли таят в себе колоссальный, практически неисчерпаемый источник энергии. Ежегодное излучение внутреннего тепла на нашей планете составляет 2,8 * 1014 млрд. кВт * час. Оно постоянно компенсируется радиоактивным распадом некоторых изотопов в земной коре.

     Источники геотермальной энергии могут  быть двух типов. Первый тип – это  подземные бассейны естественных теплоносителей – горячей воды (гидротермальные источники), или пара (паротермальные источники), или пароводяной смеси. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Второй тип – это тепло горячих горных пород. Закачивая в такие горизонты воду, можно также получить пар или перегретую воду для дальнейшего использования в энергетических целях.

     Но  в обоих вариантах использования  главный недостаток заключается, пожалуй, в очень слабой концентрации геотермальной энергии. Впрочем, в местах образования своеобразных геотермических аномалий, где горячие источники или породы подходят сравнительно близко к поверхности и где при погружении вглубь на каждые 100 м температура повышается на 30-40°С, концентрации геотермальной энергии могут создавать условия и для хозяйственного её использования. В зависимости от температуры воды, пара или пароводяной смеси геотермальные источники подразделяются на низко- и среднетемпературные (с температурой до 130 – 150° С) и высокотемпературные (свыше 150°). От температуры во многом зависит характер их использования.

     Можно утверждать, что геотермальная энергия  имеет четыре выгодных отличительных черты.

     Во-первых, её запасы практически неисчерпаемы. По оценкам конца 70-х годов до глубины 10 км они составляют такую величину, которая в 3,5 тысячи раз превышает запасы традиционных видов минерального топлива.

     Во-вторых, геотермальная энергия довольно широко распространена. Концентрация её связана в основном с поясами активной сейсмической и вулканической деятельности, которые занимают 1/10 площади Земли. В пределах этих поясов можно выделить отдельные наиболее перспективные «геотермальные районы», примерами которых могут служить Калифорния в США, Новая Зеландия, Япония, Исландия, Камчатка, Северный Кавказ в России. Только в бывшем СССР к началу 90-х годов было открыто около 50 подземных бассейнов горячей воды и пара.

     В-третьих, использование геотермальной энергии  не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии.

     Наконец, в-четвертых, геотермальная энергия  в экологическом отношении совершенно безвредна и не загрязняет окружающую среду.

     Человек издавна использует энергию внутреннего  тепла Земли (вспомним хотя бы знаменитые Римские бани), но её коммерческое использование началось только в 20-х годах нашего века со строительством первых геоЭС в Италии, а затем и в других странах. К началу 80-х годов в мире действовало около 20 таких станций общей мощностью 1,5 млн. кВт. Самая крупная из них – станция Гейзерс в США (500 тыс. кВт).

     Геотермальную энергию используют для выработки  электроэнергии, обогрева жилья, теплиц и т.п. В качестве теплоносителя используют сухой пар, перегретую воду или какой-либо теплоноситель с низкой температурой кипения (аммиак, фреон и т.п.). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  1. Энергия Мирового океана
 

     Резкое  увеличение цен на топливо, трудности  с его получением, истощение топливных ресурсов – все эти видимые признаки энергетического кризиса вызывали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана.

     Известно, что запасы энергии в Мировом  океане колоссальны, ведь две трети  земной поверхности (361 млн. кв. км) занимают моря и океаны: акватория Тихого океана составляет 180 млн. кв. км, Атлантического – 93 млн. кв. км, Индийского – 75 млн. кв. км. Так, тепловая энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

     Энергия океана давно привлекает к себе внимание человека. В середине 80-х годов  уже действовали первые промышленные установки, а также велись разработки по следующим основным направлениям: использование энергии приливов, прибоя, волн, разности температур воды поверхностных и глубинных слоев океана, течений и т.д.

     Веками  люди размышляли над причиной морских  приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление – ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Приливные волны таят в себе огромный энергетический потенциал – 3 млрд. кВт.

     Растет  интерес специалистов к приливным  колебаниям уровня океана у побережий материков. Энергию приливов на протяжении веков человек использовал для приведения в действие мельниц и лесопилок. Но с появлением парового двигателя она была предана забвению до середины 60-х годов, когда были пущены первые ПЭС во Франции и СССР. 

     Приливная энергия постоянна. Благодаря этому, количество вырабатываемой на приливных  электростанциях (ПЭС) электроэнергии всегда может быть заранее известно, в отличие от обычных ГЭС, на которых  количество получаемой энергии зависит  от режима реки, связанного не только с  климатическими особенностями территории, по которой она протекает, но и  с погодными условиями.

     Тем не менее ученые считают, что технически возможно и экономически выгодно использовать лишь очень небольшую часть приливного потенциала Мирового океана – по некоторым оценкам только 2%. При определении технических возможностей большую роль играют такие факторы, как характер береговой линии, форма и рельеф дна, глубина воды, морские течения и ветер. Опыт показывает, что для эффективной работы ПЭС высота приливной волны должна быть не менее 5 м. Чаще всего такие условия возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Но подобных мест на всём земном шаре не так уж много: по разным источникам 25, 30 или 40.

     При оценке экономических выгод строительства  ПЭС также нужно учитывать, что  наибольшие амплитуды приливов-отливов  характерны для окраинных морей  умеренного пояса. Многие из этих побережий  расположены в необжитых местах, на большом удалении от главных районов  расселения и экономической активности, следовательно, и потребления электроэнергии. Нужно учитывать также и то, что рентабельность ПЭС резко  возрастает по мере увеличения их мощности до 3-5 и тем более 10-15 млн. кВт. Но сооружение таких станций-гигантов, к тому же в отдаленных районах, требует особенно больших затрат, не говоря уже и о сложнейших технических проблемах.

     Считается, что наибольшими запасами приливной  энергии обладает Атлантический океан. В его северо-западной части, на границе США и Канады, находится залив Фанди, представляющий собой внутреннюю суженную часть более открытого залива Мен. Длина его 300 км при ширине 90 км, глубина у входа более 200 м. Этот залив знаменит самыми высокими в мире приливами, достигающими 18 м. Очень высоки приливы и у берегов Канадского арктического архипелага. Например, у побережья Баффиновой земли они поднимаются на 15,6 м. В северо-восточной части Атлантики примерно такие же приливы наблюдаются в проливе Ла-Манш у берегов Франции, в Бристольском заливе и Ирландском море у берегов Англии и Ирландии.

     Велики  также запасы приливной энергии  в Тихом океане. В его северо-западной части особенно выделяется Охотское море, где в Тугурском и Пенжинском заливах высота приливной волны  составляет 9-13 м. Значительные приливы  наблюдаются и у побережий Китая и Корейского полуострова. На восточном побережье Тихого океана благоприятные условия для использования приливной энергии имеются у берегов Канады, Чилийского архипелага на юге Чили, в узком и длинном Калифорнийском заливе Мексики.

     В пределах Северного Ледовитого океана по запасам приливной энергии  выделяются Белое море, в Мезенской губе которого приливы имеют высоту до 10 м, и Баренцево море у берегов Кольского полуострова (до 7 м). В Индийском океане запасы такой энергии значительно меньше. В качестве перспективных для строительства ПЭС здесь обычно называются залив Кач Аравийского моря (Индия) и северо-западное побережье Австралии.

     Несмотря  на такие, казалось бы весьма благоприятные, природные предпосылки, строительство ПЭС пока имеет довольно ограниченные масштабы. По существу реально можно говорить лишь о более или менее крупной промышленной ПЭС «Ранс» во Франции, об опытной Кислогубской ПЭС на Кольском полуострове(Россия) и канадско-американской ПЭС в заливе Фанди.

Информация о работе Энергетика будущего