Теория относительности Эйнштейна

Автор работы: Пользователь скрыл имя, 22 Апреля 2014 в 16:38, курсовая работа

Краткое описание

Цель работы – изучить теорию относительности А.Эйнштейна. Задачи работы:
- изучить биографию Эйнштейна;
- проанализировать работы, которые Эйнштейн создал;
- исследовать основы теории относительности.

Содержание

ВВЕДЕНИЕ 3
ГЛАВА 1 Альберт Эйнштейн – нобелевский лауреат 4
1.1 Биография А. Эйнштейна 4
1.2 Наиболее значимые работы Эйнштейна 7
ГЛАВА 2 Теория относительности Эйнштейна 11
2.1 Создание А. Эйнштейном специальной теории относительности 11
2.2 Принципы и понятия эйнштейновской теории относительности 14
ЗАКЛЮЧЕНИЕ 17
СПИСОК ЛИТЕРАТУРЫ 18

Вложенные файлы: 1 файл

КСЕ ЭНШТЕЙН.doc

— 146.50 Кб (Скачать файл)

 


 


СОДЕРЖАНИЕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

Самый знаменитый из ученых XX в. и один из величайших ученых всех времен, Эйнштейн обогатил физику с присущей только ему силой прозрения и непревзойденной игрой воображения. С детских лет он воспринимал мир как гармоническое познаваемое целое, «стоящее перед нами наподобие великой и вечной загадки». По его собственному признанию, он верил в «Бога Спинозы, являющего себя в гармонии всего сущего». Именно это «космическое религиозное чувство» побуждало Эйнштейн к поиску объяснения природы с помощью системы уравнений, которая обладала бы большой красотой и простотой.

Актуальность темы – специальная, и общая теории относительности были слишком революционны в свое время, чтобы снискать немедленное признание, но они получили ряд подтверждений на практике, что в корне изменило представление об окружающем мире.

Цель работы – изучить теорию относительности А.Эйнштейна.

Задачи работы:

- изучить биографию Эйнштейна;

- проанализировать работы, которые Эйнштейн создал;

- исследовать основы теории относительности.

Объект исследования – теория относительности Эйнштейна

Предмет исследования – постулаты теории относительности.

При написании курсовой работы нами были использованы следующие методы научного исследования:

- Сравнительный метод;

- Изучение монографических публикаций и статей.

 

Практическая значимость курсовой работы заключается в принципах теории относительности для понимания устройства мира.

Работа состоит из введения, двух частей и заключения. В первой части раскрыта биографические моменты жизни А.Эйнштейна и его научной деятельности. Во второй части охарактеризованы принципы специальной и общей теории относительности, отличия от исследований других ученых.

 

ГЛАВА 1 Альберт Эйнштейн – нобелевский лауреат

1.1 Биография А. Эйнштейна

Немецко-швейцарско-американский физик Альберт Эйнштейн родился 14 марта 1879 г.в Ульме, средневековом городе королевства Вюртемберг (ныне земля Баден-Вюртенберг в Германии), в семье Германа Эйнштейна и Паулины Эйнштейн, урожденной Кох. Вырос он в Мюнхене, где у его отца и дяди был небольшой электрохимический завод1.

Эйнштейн был тихим, рассеянным мальчиком, который питал склонность к математике, но терпеть не мог школу с ее механической зубрежкой и казарменной дисциплиной. В унылые годы, проведенные в мюнхенской гимназии Луитпольда, Эйнштейн самостоятельно читал книги по философии, математике, научно-популярную литературу. Большое впечатление произвела на него идея о космическом порядке.

После того как дела отца в 1895 г. пришли в упадок, семья переселилась в Милан. Эйнштейн остался в Мюнхене, но вскоре оставил гимназию, так и не получив аттестата, и присоединился к своим родным.

В Цюрихе Эйнштейн изучал физику, больше полагаясь на самостоятельное чтение, чем на обязательные курсы. Сначала он намеревался преподавать физику, но после окончания Федерального института в 1901 г. и получения швейцарского гражданства не смог найти постоянной работы. В 1902 г. Эйнштейн стал экспертом Швейцарского патентного бюро в Берне, в котором прослужил семь лет. Для него это были счастливые и продуктивные годы. Он опубликовал одну работу о капиллярности (о том, что может произойти с поверхностью жидкости, если ее заключить в узкую трубку). Хотя жалованья едва хватало, работа в патентном бюро не была особенно обременительной и оставляла Эйнштейну достаточно сил и времени для теоретических исследований. Его первые работы были посвящены силам взаимодействия между молекулами и приложениям статистической термодинамики. Одна из них – «Новое определение размеров молекул» ("A new Determination of Molecular Dimensions") – была принята в качестве докторской диссертации Цюрихским университетом, и в 1905 г. Эйнштейн стал доктором наук. В том же году он опубликовал небольшую серию работ, которые не только показали его силу как физика-теоретика, но и изменили лицо всей физики.

После публикации статей в 1905 г. к Эйнштейну пришло академическое признание. В 1909 г. он стал адъюнкт-профессором Цюрихского университета, в следующем году профессором Немецкого университета в Праге, а в 1912 г. – Цюрихского Федерального технологического института. В 1914 г. Эйнштейн был приглашен в Германию на должность профессора Берлинского университета и одновременно директора Физического института кайзера Вильгельма (ныне Институт Макса Планка). Германское подданство Эйнштейна было восстановлено, и он был избран членом Прусской академии наук. Придерживаясь пацифистских убеждений, Эйнштейн не разделял взглядов тех, кто был на стороне Германии в бурной дискуссии о ее роли в первой мировой войне.

В 1920 г. Эйнштейн стал приглашенным профессором Лейденского университета. Однако в самой Германии он подвергался нападкам из-за своих антимилитаристских взглядов и революционных физических теорий, которые пришлись не ко двору определенной части его коллег, среди которых было несколько антисемитов. Работы Эйнштейна они называли «еврейской физикой», утверждая, что полученные им результаты не соответствуют высоким стандартам «арийской науки». И в 20-е гг. Эйнштейн оставался убежденным пацифистом и активно поддерживал миротворческие усилия Лиги Наций. Эйнштейн был сторонником сионизма и приложил немало усилий к созданию Еврейского университета в Иерусалиме в 1925 г.

В 1922 г. Эйнштейну была вручена Нобелевская премия по физике 1921 г. «за заслуги перед теоретической физикой, и особенно за открытие закона фотоэлектрического эффекта». «Закон Эйнштейна стал основой фотохимии так же, как закон Фарадея – основой электрохимии»,– заявил на представлении нового лауреата Сванте Аррениус из Шведской королевской академии. Условившись заранее о выступлении в Японии, Эйнштейн не смог присутствовать на церемонии и свою Нобелевскую лекцию прочитал лишь через год после присуждения ему премии.

Эйнштейн стал профессором физики в новом Институте фундаментальных исследований, который был создан в Принстоне (штат Нью-Джерси). В 1940 г. он получил американское гражданство.

 В 1939 г. по настоянию нескольких физиков-эмигрантов Эйнштейн обратился с письмом к президенту Франклину Д.Рузвельту, в котором писал о том, что в Германии, по всей вероятности, ведутся работы по созданию атомной бомбы. Он указывал на необходимость поддержки со стороны правительства США исследований по расщеплению урана. В последующем развитии событий, которые привели к взрыву 16 июля 1945 г. первой в мире атомной бомбы в Аламогордо (штат Нью-Мексико), Эйнштейн участия не принимал.

После второй мировой войны, потрясенный ужасающими последствиями использования атомной бомбы против Японии и все ускоряющейся гонкой вооружений, Эйнштейн стал горячим сторонником мира, считая, что в современных условиях война представляла бы угрозу самому существованию человечества. Незадолго до смерти он поставил свою подпись под воззванием Бертрана Рассела, обращенным к правительствам всех стран, предупреждающим их об опасности применения водородной бомбы и призывающим к запрету ядерного оружия. Эйнштейн выступал за свободный обмен идеями и ответственное использование науки на благо человечества.

Среди многочисленных почестей, оказанных Эйнштейну, было предложение стать президентом Израиля, последовавшее в 1952 г. Эйнштейн отказался. Помимо Нобелевской премии, он был удостоен многих других наград, в том числе медали Копли Лондонского королевского общества (1925) и медали Франклина Франклиновского института (1935). Эйнштейн был почетным доктором многих университетов и членом ведущих академий наук мира.

 

1.2 Наиболее значимые работы Эйнштейна

В 1905 году Эйнштейн опубликовал небольшую серию работ, которые не только показали его силу как физика-теоретика, но и изменили лицо всей физики.

Одна из этих работ была посвящена объяснению броуновского движения – хаотического зигзагообразного движения частиц, взвешенных в жидкости. Эйнштейн связал движение частиц, наблюдаемое в микроскоп, со столкновениями этих частиц с невидимыми молекулами; кроме того, он предсказал, что наблюдение броуновского движения позволяет вычислить массу и число молекул, находящихся в данном объеме. Эта работа Эйнштейна имела особое значение потому, что существование молекул, считавшихся не более чем удобной абстракцией, в то время еще ставилось под сомнение.

В другой работе предлагалось объяснение фотоэлектрического эффекта – испускания электронов металлической поверхностью под действием электромагнитного излучения в ультрафиолетовом или каком-либо другом диапазоне.

Идея Эйнштейна состояла в том, чтобы установить соответствие между фотоном (квантом электромагнитной энергии) и энергией выбитого с поверхности металла электрона. Каждый фотон выбивает один электрон. Кинетическая энергия электрона (энергия, связанная с его скоростью) равна энергии, оставшейся от энергии фотона за вычетом той ее части, которая израсходована на то, чтобы вырвать электрон из металла. Чем ярче свет, тем больше фотонов и больше число выбитых с поверхности металла электронов, но не их скорость. Более быстрые электроны можно получить, направляя на поверхность металла излучение с большей частотой, так как фотоны такого излучения содержат больше энергии. Эйнштейн выдвинул еще одну смелую гипотезу, предположив, что свет обладает двойственной природой. Работы Эйнштейна позволили объяснить флуоресценцию, фотоионизацию и загадочные вариации удельной теплоемкости твердых тел при различных температурах.

Третья, поистине замечательная работа Эйнштейна, опубликованная все в том же 1905 г. – специальная теория относительности, революционизировавшая все области физики.

После напряженных усилий Эйнштейну удалось в 1915 г. создать общую теорию относительности, выходившую далеко за рамки специальной теории, в которой движения должны быть равномерными, а относительные скорости постоянными.

В 1916 г. он ввел в квантовую теорию понятие индуцированного излучения. В 1913 г. Нильс Бор разработал модель атома, в которой электроны вращаются вокруг центрального ядра (открытого несколькими годами ранее Эрнестом Резерфордом) по орбитам, удовлетворяющим определенным квантовым условиям. Согласно модели Бора, атом испускает излучение, когда электроны, перешедшие в результате возбуждения на более высокий уровень, возвращаются на более низкий. Разность энергии между уровнями равна энергии, поглощаемой или испускаемой фотонами. Возвращение возбужденных электронов на более низкие энергетические уровни представляет собой случайный процесс. Эйнштейн предположил, что при определенных условиях электроны в результате возбуждения могут перейти на определенный энергетический уровень, затем, подобно лавине, возвратиться на более низкий, т.е. это тот процесс, который лежит в основе действия современных лазеров.

В то время как большинство физиков начало склоняться к принятию квантовой теории, Эйнштейн все более не удовлетворяли следствия, к которым она приводила. В 1927 г. он выразил свое несогласие со статистической интерпретацией квантовой механики, предложенной Бором и Максом Борном. Согласно этой интерпретации, принцип причинно-следственной связи неприменим к субатомным явлениям. Эйнштейн был глубоко убежден, что статистика является не более чем средством и что фундаментальная физическая теория не может быть статистической по своему характеру. По словам Эйнштейн, «Бог не играет в кости» со Вселенной. В то время как сторонники статистической интерпретации квантовой механики отвергали физические модели ненаблюдаемых явлений, Эйнштейн считал теорию неполной, если она не может дать нам «реальное состояние физической системы, нечто объективно существующее и допускающее (по крайней мере в принципе) описание в физических терминах». До конца жизни он стремился построить единую теорию поля, которая могла бы выводить квантовые явления из релятивистского описания природы. Осуществить эти замыслы Эйнштейну так и не удалось. Он неоднократно вступал в дискуссии с Бором по поводу квантовой механики, но они лишь укрепляли позицию Бора.

Самый знаменитый из ученых XX в. и один из величайших ученых всех времен, Эйнштейн обогатил физику с присущей только ему силой прозрения и непревзойденной игрой воображения. С детских лет он воспринимал мир как гармоническое познаваемое целое, «стоящее перед нами наподобие великой и вечной загадки». По его собственному признанию, он верил в «Бога Спинозы, являющего себя в гармонии всего сущего». Именно это «космическое религиозное чувство» побуждало Эйнштейн к поиску объяснения природы с помощью системы уравнений, которая обладала бы большой красотой и простотой.

Таким образом, А. Эйнштейн:

  1. Создал современную научную картину мира и современный стиль физического мышления.
  2. Разработал физическую теорию пространства и времени, основываясь на философских идеях.
  3. Пересмотрел казавшуюся незыблемой механическую картину мира.
  4. Пытался построить единую теорию поля, которая свела бы в одно целое гравитацию и электромагнетизм, а в перспективе объяснила бы и многообразный мир элементарных частиц.

Парадоксы не были для Эйнштейна самоцелью. Они вытекали из простых и прозрачных исходных принципов и были логически неизбежны.

 

 

 

 

 

ГЛАВА 2 Теория относительности Эйнштейна

2.1 Создание А. Эйнштейном специальной теории относительности

 

В сентябре 1905 г. в немецком журнале «Annalen der Physik» появилась работа А. Эйнштейна «К электродинамике движущихся тел». Эйнштейн сформулировал основные положения специальной теории относительности, которая объясняла отрицательный результат опыта Майкельсона и смысл преобразований Лоренца, а также содержала новый взгляд на пространство и время2.

Эйнштейн обобщил принцип относительности Галилея на все явления природы. Принцип относительности Эйнштейна гласит: «Никакими физическими опытами, произведенными в инерциальной системе отсчета, невозможно определить, движется ли эта система равномерно и прямолинейно, или находится в покое». Не только механические, но и все физические законы одинаковы во всех инерциальных системах отсчета.

Принцип относительности явился первым постулатом, который Эйнштейн положил в основу созданной им теории относительности.

Лоренц отмечал по этому поводу: «Заслуга Эйнштейна состоит в том, что он первый высказал принцип относительности в виде всеобщего, строго и точно действующего закона». Следует отметить, что точки зрения об универсальности принципа относительности придерживался также А. Пуанкаре3.

Информация о работе Теория относительности Эйнштейна