Научные революции в естествознании, их основные виды и черты

Автор работы: Пользователь скрыл имя, 07 Ноября 2013 в 19:33, контрольная работа

Краткое описание

Развитие естествознания не является монотонным процессом количественного накопления знаний об окружающем мире. В развитии науки время от времени возникают переломные этапы, кризисы, выход на качественно новый уровень знаний, который радикально изменяет прежнее видение мира или картину мира. Такие переломные в истории науки этапы называют научными революциями. Научная революция есть процесс коренного, качественного переворота знаний и представлений о мире, вызванный научными достижениями и открытиями; это коренная ломка представлений о строении мира и положения в нем человека, великий поворот в мышлении, перелом в развитии науки. При этом старое, занимавшее до тех пор господствующее положение, заменяется на новое, а не переделывается постепенно шаг за шагом.

Вложенные файлы: 1 файл

1.doc

— 228.00 Кб (Скачать файл)

Синергетика как новая парадигма самоорганизации зародилась в нашей стране. Еще в 60-х годах XX века советским ученым Б.Н.Белоусовым были начаты интересные эксперименты с так называемыми автокаталитическими химическими реакциями, которые затем были продолжены A.M. Жаботинским. Эти эксперименты показали, что наличие автокаталитических реакций значительно ускоряет процессы самоорганизации в химической форме движения. Были высказаны веские предположения, что именно автокаталитические самоорганизующиеся химические процессы послужили основой для перехода от предбиологической к биологической форме движения материи.

Позднее реакция Белоусова-Жаботинского послужило экспериментальной основой  для построения математической модели самоорганизующихся процессов в бельгийской школе лауреата Нобелевской премии И.Р. Пригожина. Исследуя по преимуществу процессы самоорганизации в физических и химических системах, И.Р. Пригожин в целом ряде своих работ (часть из них переведена на русский

язык) раскрывает исторические предпосылки и мировоззренческие основания теории самоорганизации.

В 70—80-х годах XX века работы в области синергетики быстро расширялись, в них включались все новые исследователи. Немецкому профессору Г. Хакену (Институт синергетики и теоретической физики в Штутгарте) удалось объединить большую международную группу ученых, создавшую серию книг по синергетике. В этих работах представлялись результаты исследований процессов самоорганизации в самых разных системах, включая и социальные.

В нашей стране разработкой теории самоорганизации на базе математических моделей и вычислительного (компьютерного) эксперимента занялась школа академика А.А. Самарского и члена-корреспондента РАН С.П. Курдюмова. Эта школа выдвинула ряд оригинальных идей для понимания механизмов возникновения и эволюции относительно устойчивых структур в нелинейных средах.

Синергетику, как новую парадигму, можно предельно кратко охарактеризовать тремя ключевыми идеями: самоорганизация, открытые системы, нелинейность.

Физика XIX века ввела понятие о необратимых процессах. Провозглашая необратимый характер физических изменений, классическая термодинамика считала, что эти изменения могут происходить лишь в сторону увеличения энтропии, а следовательно, усиления хаоса, дезорганизации материальных систем. Эти представления об эволюции физических (неорганических) систем, способных лишь к движению в сторону дезорганизации, находились в резком противоречии с самоорганизацией живых систем.

Но физика XIX столетия рассматривала лишь закрытые, изолированные от окружающей среды системы, в которых энтропия действительно имеет тенденцию к возрастанию. Такие системы «эволюционируют» в сторону термодинамического равновесия и дезорганизации - в полном соответствии со вторым началом термодинамики. Однако в наше время считается установленным, что представление прежней физики о закрытых системах схематизирует и упрощает действительность, то есть является весьма сильной идеализацией, которая реально в природе не встречается.

Во второй половине XX века в науке утвердилось представление согласно которому открытость системы является непременным условием самоорганизации. Еще до появления синергетики американский кибернетик Г. Ферстер выразил это достаточно ясно. «Термин самоорганизующаяся система», - писал он, - становится бессмысленным, если система не находится в контакте с окружением, которая обладает доступным для нее энергией и порядком и с которым наша система находится в состоянии постоянного взаимодействия, так что она умудряется как-то «жить» за счет этого окружения»1.

Тот факт, что для самоорганизации  необходима открытая система, то есть система, обменивающаяся с окружающей средой веществом и энергией, ставил под сомнение универсальную справедливость выводов классической термодинамики, имеющей дело с закрытыми системами (которые изолированы от окружающей среды и которые, как уже отмечалось выше, фактически не встречаются в природе). Оказалось, что принцип Больцмана (второе начало термодинамики) в буквальном смысле не применим к системам открытого типа. Конечно, и в открытых системах может нарастать энтропия, происходить увеличение беспорядка (дезорганизации), но за счет обмена энергией с окружающей средой эти процессы могут приостанавливаться и даже приобретать обратный характер. В такого рода системах, грубо говоря, использованная, «обесцененная» энергия рассеивается в окружающей среде (а взамен поступает новая энергия из среды). Поэтому подобные системы, или структуры получили наименование «диссипативные», что в переводе с английского означает «рассеивающие». Данное понятие сыграло важную роль в становлении синергетики.

Разработка теории диссипативных  структур показало, что диссипация - это не фактор разрушения, а необходимое и важное свойство процессов самоорганизации. Именно диссипация есть необходимый процесс, способствующий выстраиванию упорядоченной структуры в нелинейной открытой среде.

Диссипативные структуры, не подчиняющиеся  принципу Больцмана, связаны с совершенно другим принципом, который И.Р. Пригожин назвал «возникновение порядка через флуктуации». Как рождается порядок из хаоса (беспорядка)? - ставит вопрос И.Р. Пригожин (и этот вопрос выносит в заголовок своей основополагающей работы по синергетике, написанной в соавторстве с И. Стенгерс)2.

С его точки зрения, инициирующим началом самоструктурирования нелинейной открытой среды является малая флуктуация. Под флуктуациями в синергетике понимают случайные отклонения величин, характеризующих систему, от средних значений. Таким образом, синергетическое понятие флуктуации оказалось тесно связанным с философской категорией случайности.

Синергетика по-новому осветила место  и роль случайности в эволюции материального мира. Она опровергла тот привычный взгляд, будто случайная флуктуация несущественна, ибо маломасштабна, и в силу этого, не может определять путь развития системы. С точки зрения синергетики, в открытых нелинейных системах (а таковые типичны в мире, в котором мы живем) случайное малое воздействие - флуктуация - может приводить к весьма существенному результату. Таким образом случайность играет особую, конструктивную (можно даже сказать — креативную) роль в процессах самоорганизации, происходящих в материальном мире.

Формирование синергетики в  последней четверти XX столетия оказалось в чем-то схожим со становлением кибернетики в середине этого столетия. Такая схожесть основывается на обнаруженной общности в феноменах, имеющих место в системах неживой и живой природы, а также в социальных системах. Во всех этих материальных системах имеют место процессы самоорганизации.

Вместе с тем между кибернетикой и синергетикой существует и значительное различие. Кибернетика, возникшая на рубеже 40-50-х годов XX века, претендовала на общенаучное значение в изучении процессов управления, имеющих место в некоторых неорганических (созданных человеком), биологических и социальных системах. И, надо сказать, она успешно отстояла свой общенаучный статус. Синергетика претендует сегодня на большее: она выступает уже как новое миропонимание, как основа концепций глобального и космического эволюционизма.

Итоги ушедшего столетия

На границе столетий всегда какая-то часть людей была озабочена поисками символов ушедшего времени. Вот и  ныне — периодические издания  дружно выделяют события, ставшие этапными и оказавшие влияние на жизнь  человечества в прошедшие сто лет. Называют атомную бомбу, компьютеры и Интернет, открытие генетического кода и клонированную овечку. Если посмотреть повнимательнее и на прочие более мелкие события века, то все равно окажется, что, подводя итоги времен, люди выделяют прежде всего и чаще всего достижения науки и техники.

Известное приложение к «Независимой газете» — «НГ-Наука» в течение 2000 года проводила рейтинговые опросы читателей по четырем, как принято сегодня говорить, номинациям:

  • самые выдающиеся ученые столетия;
  • открытия и научные концепции (теории), в наибольшей степени повлиявшие на развитие цивилизации в XX в.;
  • наиболее значимые технологии и изобретения;
  • самые грандиозные реализованные технические (инженерные) проекты.

В результате, как и планировала  «НГ-Наука», появился список — «Золотая сотня» науки и техники XX в., составленный по мнениям читателей (Приложение 1).

  1. Классическая механика и ее роль в познании Природы. Механическая картина мира
    1. Классическая механика и ее роль в познании Природы

При анализе истории познания в глобальном плане отчетливо выделяется ряд основных этапов. Прежде всего рассматривается этап, олицетворяемый классической механикой. Становление механики ознаменовало собою становление научного метода, становление естествознания как основополагающего компонента науки вообще. Формулировкой Ньютоном основных законов механики завершился первоначальный и чрезвычайно длительный этап познания природы. Этот этап с его достаточно расплывчатыми, во многом неопределенными и разрозненными представлениями можно назвать описательным. На смену ему пришел этап аналитический, основанный на опыте и математике как форме выражения исходных, фундаментальных законов природы. Судьбы теоретического естествознания стали неразрывно связываться с судьбами математики и эксперимента.

Успехи классической механики в  познании природы огромны и несомненны. Ее разработка оказала громадное  воздействие на все последующее  интеллектуальное развитие человечества. Лагранж называл Ньютона не только величайшим, но и самым счастливым гением: «Систему мира можно создать только один раз»3. На протяжении почти трех столетий механика Ньютона определяла развитие по крайней мере всех наук о природе. Механика положила начало научному обоснованию и проектированию техники, различных механизмов и машин. Другими словами, механика явилась важнейшим стимулом интеллектуального и материально-практического развития общества.

Воздействие механики на научное мышление столь велико, что на ее основе, на основе ее методов и представлений  сложилась достаточно целостная базисная модель мира, сложилась вполне определенная парадигма научного мышления. Отличительной чертой этой парадигмы является то, что все закономерности природы мыслились наподобие законов механики и соответственно все они относились к одному классу, который первоначально получил название динамических закономерностей, а ныне их точнее называть закономерностями жесткой детерминации (поскольку этот класс закономерностей не обладает монополией на познание динамики реальных процессов). Этот этап развития науки был весьма длительным, охватывает период с XVII до середины XIX веков и характеризуется как классическая наука.

    1. Механическая картина мира (МКМ)

Введение

Механическая картина мира создана трудами Галилея, Кеплера, Гюйгенса, Ньютона. Главной задачей Ньютона и был «синтез системы мира». Положенная в основу его труда механика давала научное объяснение природы. Для Ньютона было важно не только доказать, как Гюйгенс и Кеплер, правдоподобность идей Коперника на основе наблюдений, но и математически обосновать предпосылки всей системы, что делало ее «абсолютно достоверной». В «Математических началах натуральной философии», как видно уже из названия, Ньютон ориентировался на аксиоматический метод Евклида, только у него вместо аксиом — принципы, управляющие явлениями природы. Ньютон уходил от причин тяготения, от гипотез «о скрытых качествах», заменяя эти натурфилософские размышления результатами эксперимента. И описание движения было сведено к математическому: знание координат и скоростей тел в начальный момент по уравнениям движения определяло динамику в последующие моменты. Три закона механики Ньютона управляют движениями объектов, заполняющих пространственно-временную сцену.

Пространство трехмерно и евклидово, и траектории тел также подчиняются  геометрии Евклида. Время и пространство у Ньютона — абсолютны, не оказывают влияния на тела, размещенные в них. Сила тяготения распространяется в пространстве с бесконечной скоростью и не меняет ход времени. Можно было проанализировать прошлое и предсказать будущее динамическое состояние системы, так как замена знака времени в уравнениях Ньютона не оказывает влияния на движение. Уравнения динамики Ньютона линейны, действие равно противодействию; интенсивность следствия определяется интенсивностью причины. Поэтому все в мире предопределено, строго детерминировано. Когда Ньютон сформулировал свою первую в истории научную картину мира, этого термина еще не существовало, но он имел его в виду, называя свой труд «натуральной философией». Это была первая научная теория в современном смысле, поэтому 1687 г. часто называют годом рождения современного естествознания.

В рамках МКМ построена космогония Солнечной системы, открыты законы взаимодействия электрических зарядов  и взаимодействия точечных магнитных  полюсов. П.Лаплас строил небесную механику и «молекулярную» механику, но при построении последней ему пришлось вводить гипотезы, силы притяжения и отталкивания. Такая универсальная механика присутствовала в курсе физики, написанном П.Лапласом и Ж. Б.Био, продолжал ее строить и Ампер. М.В.Ломоносов с помощью кинетической теории объяснял упругие свойства газов. К научному обоснованию теории стоимости Адам Смит пришел под влиянием идей Ньютона. В течение XVIII в. механика Ньютона была приведена в стройную систему, были разработаны методы вычисления (строгие и приближенные) задач движения. Л.Эйлер, Ж.Даламбер, Ж.Л.Лагранж сделали механику аналитической (1788), обладающей строгостью математического анализа. Понятие МКМ существенно расширилось. Закон сохранения и превращения энергии вышел далеко за пределы механики. Лаплас и Лавуазье считали, что теория теплоты должна строиться на принципе сохранения «живых сил».

В истории науки научные картины  мира не оставались неизменными, а сменяли  друг друга, таким образом, можно  говорить об эволюции научных картин мира. Наиболее наглядной представляется эволюция физических картин мира: натурфилософской – до 16-17 вв., механистической – до второй половины 19 в., термодинамической (в рамках механистической теории) в 19 в,  релятивистской и квантово-механической в 20-м веке.  На рис.1 схематично представлено развитие и смена научных картин мира в физике.

 
Рис.1. Физические картины Мира

 

Физическая картина мира создается  благодаря фундаментальным экспериментальным измерениям и наблюдениям, на которых основываются теории, объясняющие факты и углубляющие понимание природы. Физика – это экспериментальная наука, поэтому она не может достичь абсолютных истин (как и само познание в целом), поскольку эксперименты сами по себе несовершенны. Этим обусловлено постоянное развитие научных представлений.

      1. Основные понятия и законы  МКМ

МКМ складывалась под влиянием   материалистических представлений о материи и формах ее существования. Основополагающими идеями этой картины Мира являются классических атомизм, восходящий к Демокриту и т.н. механицизм. Само становление механической картины справедливо связывают с именем Галилео Галилея, впервые применившего для исследования природы экспериментальный метод вместе с с измерениями исследуемых величин и последующей математической обработкой результатов. Этот метод принципиально отличался от ранее существовавшего натурфилософского способа, при котором для объяснения явлений природы придумывались априорные (<лат. a priori – букв. до опыта), т.е. не связанные с опытом и наблюдением, умозрительные схемы, для объяснения непонятных явлений вводились дополнительные сущности, например мифическая “жидкость” теплород, определявшая нагретость тела или флогистон – субстанция, обеспечивающая горючесть вещества (чем больше флогистона в веществе, том лучше оно горит).

Информация о работе Научные революции в естествознании, их основные виды и черты