Концепция современного естествознания

Автор работы: Пользователь скрыл имя, 28 Декабря 2010 в 15:39, контрольная работа

Краткое описание

Системность материи заключается в том, что любой объект одновременно является самостоятельной сложной системой и элементом другой, более сложной системы. Совокупность связей между элементами системы образует структуру системы. Существует два основных типа связи между элементами систем — горизонтальные и вертикальные связи. Горизонтальные связи — это связи координации между элементами и системами одного уровня.

Содержание

1. Структурные уровни организации материи.
2. Современные методы проверки познанных законов природы.
3. Неорганическая химия.
4. Элементарные частицы. Мюоны.
5. Основные законы сохранения в природе.
6. Что такое симметрия. Операции симметрии.
7. Общая характеристика органических веществ. Классификация органических веществ.
8. Структура живых организмов. Строение клетки.

Вложенные файлы: 1 файл

kce 1.doc

— 278.00 Кб (Скачать файл)

     Дедукция - метод научного познания, который заключается в переходе от

некоторых общих  посылок к частным результатам-следствиям. Умозаключение по дедукции строится по следующей схеме; все предметы класса «А» обладают свойством «В»; предмет «а» относится к

классу «А»; значит «а» обладает свойством «В». В целом дедукция как метод

познания исходит  из уже познанных законов и  принципов. Поэтому метод дедукции не позволяет получить содержательно нового знания. Дедукция представляет собой лишь способ логического развертывания системы положений на базе исходного знания, способ выявления конкретного содержания общепринятых посылок. Решение любой научной проблемы включает выдвижение различных догадок, предположений, а чаще всего более или менее обоснованных гипотез, с помощью которых исследователь пытается объяснить факты, не укладывающиеся в старые теории. Гипотезы возникают в неопределенных ситуациях, объяснение которых становится актуальным для науки. Кроме того, на уровне эмпирических знаний (а также на уровне их объяснения) нередко имеются противоречивые суждения. Для разрешения этих проблем требуется выдвижение гипотез.

     Гипотеза представляет собой всякое предположение, догадку или

предсказание, выдвигаемое  для устранения ситуации неопределенности в научном исследовании. Поэтому гипотеза есть не достоверное знание, а вероятное, истинность или ложность которого еще не установлены. Любая гипотеза должна быть обязательно обоснована либо достигнутым знанием данной науки, либо новыми фактами (неопределенное знание для обоснования гипотезы не используется). Она должна обладать свойством объяснения всех фактов, которые относятся к данной области знания, систематизации их, а также фактов за пределами данной области, предсказывать появление новых фактов (например, квантовая гипотеза М. Планка, выдвинутая в начале XX в., привела к созданию квантовой механики, квантовой электродинамики и др. теорий). При этом гипотеза не должна противоречить уже имеющимся фактам. Гипотеза должна быть либо подтверждена, либо опровергнута. Для этого она должна обладать свойствами фальсифицируемости и верифицируемости.

  Фальсификация- процедура, устанавливающая ложность гипотезы в результате экспериментальной или теоретической проверки. Требование фальсифицируемости гипотез означает, что предметом науки может быть только принципиально опровергаемое знание. Неопровержимое знание (например, истины религии) к науке отношения не имеет. При этом сами по себе результаты эксперимента опровергнуть гипотезу не могут. Для этого нужна альтернативная гипотеза или теория, обеспечивающая дальнейшее

развитие знаний. В противном случае отказа от первой гипотезы не происходит.

     Верификация - процесс установления истинности гипотезы или теории в

результате их эмпирической проверки. Возможна также косвенная

фасифицируемость, основанная на логических выводах из прямо верифицированныхфактов.

3. Частные методы - это специальные методы, действующие либо только в

пределах отдельной  отрасли науки, либо за пределами  той отрасли, где они

возникли. Таков  метод кольцевания птиц, применяемый в зоологии. А методы физики, использованные в других отраслях естествознания, привели к созданию астрофизики, геофизики, кристаллофизики и др. Нередко применяется комплекс взаимосвязанных частных методов к изучению одного предмета. Например, молекулярная биология одновременно пользуется методами физики, математики, химии, кибернетики. Наши представления о сущности науки не будут полными, если мы не рассмотрим вопрос о причинах, ее породивших. Здесь мы сразу сталкиваемся с дискуссией о времени возникновения науки. Когда и почему возникла наука? Существуют две крайние точки зрения по этому вопросу. Сторонники одной объявляют научным всякое обобщенное абстрактное знание и относят возникновение науки к той седой древности, когда человек стал делать первые орудия труда. Другая крайность - отнесение генезиса (происхождения) науки к тому сравнительно позднему этапу истории (XV – XVII вв.), когда появляется опытное естествознание. Современное науковедение пока не дает однозначного ответа на этот вопрос, так как рассматривает саму науку в нескольких аспектах. Согласно основным точкам зрения наука -это совокупность знаний и деятельность по производству этих знаний; форма общественного сознания; социальный институт; непосредственная производительная сила общества; система профессиональной (академической) подготовки и воспроизводства кадров. Мы уже называли и

довольно подробно говорили об этих сторонах науки. В  зависимости от того, какой аспект мы будем принимать во внимание, мы получим разные точки отсчета развития науки:

- наука как  система подготовки кадров существует  с середины XIX в.;

- как непосредственная  производительная сила - со второй  половины XX в.;

- как социальный  институт - в Новое время;              /У^>

     - как форма общественного сознания - в Древней Греции;

- как знания  и деятельность по производству  этих знаний -с начала

человеческой  культуры.

     Разное время рождения имеют и различные конкретные науки. Так, античность дала миру математику, Новое время -современное естествознание, в XIX в. появляется общество-знание. 
 
 
 
 
 

    3. Неорганическая химия.

    

    

     Неорганическая химия — раздел химии, связанный с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Это область охватывает все химические соединения, за исключением органических веществ. Различие между органическими и неорганическими соединениями, содержащими углерод, являются по некоторым представлениям произвольными.[1] Неорганическая химия изучает химические элементы и образуемые ими простые и сложные вещества (кроме органических соединений углерода). Обеспечивает создание материалов новейшей техники. Число неорганических веществ приближается к 400 тысяч.

       Теоретическим фундаментом неорганической химии является периодический закон и основанная на нем периодическая система Д. И. Менделеева. Важнейшая задача неорганической химии состоит в разработке и научном обосновании способов создания новых материалов с нужными для современной техники свойствами. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    4. Элементарные частицы. Мюоны.

     Мюо́н (от греческой буквы μ, использующейся для обозначения) в стандартной модели физики элементарных частиц — неустойчивая элементарная частица с отрицательным электрическим зарядом и спином 1/2. Вместе с электроном, тау-лептоном и нейтрино классифицируется как часть лептонного семейства фермионов. Как и все фундаментальные частицы, мюон имеет античастицу с зарядом противоположного знака, но с равной массой и спином: антимюон.

     По историческим причинам, мюоны иногда упоминаются как мю-мезоны, хотя они не являются мезонами в современном представлении физики элементарных частиц. Масса мюона в 207 раз больше массы электрона; по этой причине мюон можно рассматривать как чрезвычайно тяжелый электрон. Мюоны обозначаются как μ, а антимюоны как μ+.

     На Земле мюоны регистрируются в космических лучах, они возникают в результате распада заряженных пионов. Пионы создаются в верхних слоях атмосферы первичными космическими лучами и имеют очень короткое время распада — несколько наносекунд. Время жизни мюонов тоже мало — 2,2 микросекунды. Однако мюоны космических лучей имеют скорости, близкие к скорости света, так что из-за эффекта замедления времени специальной теории относительности их легко обнаружить у поверхности Земли.

     Как и в случае других заряженных лептонов, существует мюонное нейтрино, которое имеет тот же аромат, что и мюон. Мюонные нейтрино обозначаются как νμ. Мюоны почти всегда распадаются в электрон, электронное антинейтрино и мюонное нейтрино; существуют также более редкие типы распада, когда возникает дополнительный фотон или электрон-позитронная пар 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    5. Основные законы сохранения в  природе.

   Фундаментальные физические законы — это наиболее полное на сегодняшний день, но приближенное отражение объективных процессов в природе. Различные формы движения материи описываются различными фундаментальными теориями. Каждая из этих теорий описывает вполне определенные явления: механическое или тепловое движение, электромагнитные явления.

   Существуют более общие законы  в структуре фундаментальных физических теорий, охватывающие все формы движения материи и все процессы. Это законы симметрии, или инвариантности, и связанные с ними законы сохранения физических величин.

10.2.1. Законы  сохранения физических величин

   Законы сохранения физических величин — это утверждения, согласно которым численные значения этих величин не меняются со временем в любых процессах или классах процессов. Фактически во многих случаях законы сохранения просто вытекают из принципов симметрии.

   Идея сохранения появилась сначала как чисто философская догадка о наличии неизменного (стабильного) в вечно меняющемся мире. Еще античные философы-материалисты пришли к понятию материи как неуничтожимой и несотворимой основы всего сущего. С другой стороны, наблюдение постоянных изменений в природе приводило к представлению о вечном движении материи как важном ее свойстве. С появлением математической формулировки механики на этой основе появились законы сохранения.

   Законы сохранения тесно связаны  со свойствами симметрии физических систем. При этом симметрия понимается как инвариантность физических законов относительно некоторой группы преобразований входящих к них величин. Наличие симметрии приводит к тому, что для данной системы существует сохраняющаяся физическая величина. Если известны свойства симметрии системы, как правило, можно найти для нее закон сохранения и наоборот.

Таким образом, законы сохранения:

1. Представляют  наиболее общую форму детерминизма.

2. Подтверждают  структурное единство материального  мира.

3. Позволяют сделать заключение о характере поведения системы.

4. Обнаруживают  существование глубокой связи  между разнообразными формами  движения материи. Важнейшими  законами сохранения, справедливыми  для любых изолированных систем, являются:

-  закон сохранения и превращения энергии;

-  закон сохранения импульса;

-  закон сохранения электрического заряда;

- закон сохранения массы.

   Кроме всеобщих существуют законы  сохранения, справедливые лишь для  ограниченного класса систем  и явлений. Так, например, существуют законы сохранения, действующие только в микромире. Это:

- закон сохранения барионного или ядерного заряда;

- закон сохранения лептонного заряда;

- закон сохранения изотопического спина;

- закон сохранения странности.

   В современной физике обнаружена  определенная иерархия законов  сохранения и принципов симметрии.  Одни из этих принципов выполняются  при любых взаимодействиях, другие  же — только при сильных.  Эта иерархия отчетливо проявляется во внутренних принципах симметрии, которые действуют в микромире.

Информация о работе Концепция современного естествознания