Контрольная работа по "Концепция современного естествознания"

Автор работы: Пользователь скрыл имя, 10 Декабря 2011 в 20:01, контрольная работа

Краткое описание

Природа есть сложная система, сложный организм, где все связано со всем. По выражению современного философа К. Ясперса, «существуют отдельные науки, а не наука вообще как наука о действительном, однако каждая из них входит в мир беспредельный, но все-таки единый в калейдоскопе связей». Аналитический метод и выделение какой-то стороны предмета или явления — наиболее критикуемые стороны научного метода познания. Наука с самого начала стала отвлекаться от вопросов «почему?» и вопросов общего характера, занявшись исследованием «как все происходит?». Путь аналитического естествознания, заданный Ньютоном, превратил общие соображения в четко поставленную математическую задачу, и ученый, не вдаваясь в выяснение физической природы тяготения, решил ее разработанным им же математическим методом.

Содержание

1.1. Методы естествознания.
1.2. Методы оценок размеров и расстояний.
1.3. Свет - электромагнитная волна.
2.1. Связь законов сохранения со свойствами пространства и времени.
2.2. Волновое описание процессов.
2.3. Суть спора о «тепловой смерти Вселенной».
3.1. Развитие представлений о составе веществ.
3.2. Уровни организации живой природы на Земле.
3.3. Основные положения клеточной теории, методы изучения состава клетки.
4.1. Характеристики и эволюция звезд.
4.2. Рождение частиц по современной модели развития Вселенной.
5.1. Биосферный уровень организации жизни.
5.2. Понятие бифуркации.
Список литературы

Вложенные файлы: 1 файл

Контрольная работа. Естествознание.doc

— 771.00 Кб (Скачать файл)

   Расстояния  до звезд, как уже указывалось, измеряют методом параллакса (см. рис. 2.2). Здесь  единицами длин служат парсек и световой год. 1 пк соответствует годичному  параллаксу в 1", т.е. с этого расстояния 1 а. е. видна под углом 1". Отсюда следует, что в 1 пк столько астрономических единиц, сколько угловых секунд в радиане, т. е. 1 пк = 206 265 а. е. Естественно, что наибольший годичный параллакс = (0",76) имеет ближайшая к нам звезда - Проксима Центавра. Поскольку расстояние ,

     , т.е. самая близкая к нам звезда находится на расстоянии, в 272 000 раз большем, чем Солнце. Световой год есть расстояние, которое проходит свет в течение года, т.е. Но 1 пк = 206265 а. е., и потому 1 пк = 3,26 св. г.

   В XIX в. звезды рассортировали по размерам и массам, а затем — по спектрам.

   

   

   Спектральные классы ввел в 1900 г. американский астроном Э. Пикеринг, обозначив их буквами латинского алфавита. Границы между классами были нечеткие, и впоследствии каждый класс разбили на группы от 0 до 9, и наше Солнце попало по спектру в группу G1. Когда при истолковании спектров начали учитывать ионизацию, стало возможным по спектральным сериям определять температуру звезд. Состав звезд не отличается разнообразием: как и Солнце, большинство звезд состоит преимущественно из водорода и гелия. Тогда спектральные классы выстроили в порядке убывания температуры: О, В, A, F, G, К, М. Имеются еще четыре дополнительных класса: для холодных звезд — R, N, S, для горячих — W. Очевидно, что без классификации звезд нельзя говорить об их эволюции.

   Химический  состав звезд определяют по спектрам. Данные относятся к поверхностным слоям звезд, поскольку они непрозрачны. Оказалось, что 98 % звездного вещества — это водород и гелий, причем обычно водорода по массе в 2,7 раза больше (рис. 9.3). Строение звезды и источник ее энергии казались в какой-то степени выясненными, но возникли другие, не менее важные вопросы. Солнце, возраст которого оценивают в 5 млрд лет, бедно водородом и богато гелием, хотя за это время оно должно было истратить меньше водорода и образовать меньше гелия. Может быть, раньше оно было горячее и процессы шли скорее, но, по геологическим данным, количество солнечной энергии практически не менялось. Если бы водород уже в большей части выгорел, то в самом центре этой звезды могли начаться ядерные реакции и стали образовываться более тяжелые элементы. На Солнце и других звездах много элементов, более сложных, чем гелий. Получается — и они из самого центра Солнца?! Это противоречит гипотезе происхождения их из туманности, стало быть, тяжелые элементы должны появиться как-то иначе.

   Диаграмму зависимости светимостей звезд  от их спектральных классов (температур) составили голландец Эйнар Герцшпрунг и американец Генри Норрис Ресселл, она названа именами обоих (рис. 9.4). По оси абсцисс расположены спектральные классы звезд (показатели цвета или температуры), по оси ординат — светимости звезд L (или звездные величины М). Звезды по светимости разделены на семь классов, обозначенных римскими цифрами. Класс светимости пишется после спектрального класса

    звезды: так, Солнце — звезда класса G2V. На диаграмме звезды располагаются не беспорядочно, а образуют несколько последовательностей.

   Главная последовательность — узкая полоса звезд, протянувшаяся из верхнего левого угла вниз. Так, в окрестности Солнца большинство звезд сконцентрированы вдоль нее. В правом верхнем углу — сверхгиганты. Размеры звезд сумели оценить с помощью изобретенного в 1881 г. интерферометра, который улавливал разницу в длинах световых волн, исходящих от разных точек поверхности звезды. Оказалось, что вблизи Солнца на одного сверхгиганта приходится около 1000 гигантов и около 10 млн звезд Главной последовательности.

   Группа  звезд-гигантов компактна и расположена  вверху диаграммы между Главной последовательностью и группой сверхгигантов. Параллельно Главной последовательности, несколько ниже ее, расположены звезды, образующие последовательность субкарликов (у них содержание металлов гораздо ниже, чем у звезд Главной последовательности), в левом нижнем углу диаграммы — группа белых карликов, светимость которых меньше солнечной в сотни раз.

   

   Масса звезды приобрела большую значимость, когда были открыты источники энергии звезд. Масса Солнца Мс = 2 1030 кг, а массы почти всех звезд лежат в пределах 0,1 — 50 массы Солнца. Практически наиболее верным способом определения массы звезды являются исследования движений двойных звезд. Оказалось, что положение звезды на Главной последовательности определяется ее массой (рис. 9.5).

   Соотношения светимостей звезд и их радиусов , светимостей и масс сравнили со значением количества энергии, излучаемой поверхностью звезды за единицу времени , и получили соотношение между температурой поверхности и ее массой . Итак, чем меньше масса звезды, тем меньше ее поверхностная температура и более поздним будет ее спектральный класс. Отсюда можно оценить массу звезды и по ее светимости: . Звезды отличаются цветом; считается, что имеют место законы равновесного излучения — закон Стефана—Больцмана и закон Вина. Антарес имеет красный цвет, Капелла — желтый, Сириус — белый, Вега — голубовато-белый.

   Модели  внутреннего строения звезд основаны на соотношениях между их параметрами. Они получены Эддингтоном из условий равновесия плазмы внутри звезд. Оказалось, что с увеличением массы скорость потребления топлива растет быстрее, чем его запас, т. е. чем больше и горячее звезда, тем быстрее кончится ее топливо и ее «жизнь» на Главной последовательности, где находится 0,99 всех видимых звезд. Так, Солнце, по оценкам

   

   ученых, пробудет на ней еще 8 млрд лет, т.е. оно еще не достигло своего среднего возраста. Если бы Солнце принадлежало к классу А, то его срок (5 млрд лет) был бы на исходе. Для такой большой и горячей звезды, как S Золотой Рыбы, этот срок был бы всего 2 — 3 млн лет. В теории Эддингтона все свойства звезды основывались на модели идеального газа, поэтому звезды у него при сжатии обязательно нагревались.

   На  основе закономерностей распределения  звезд на диаграмме и известных физических моделей Ресселл построил эволюционный путь звезды (рис. 9.6). Переходя от стадии холодной туманности в голубовато-белую, звезда перемещается в верхней части диаграммы справа налево, пока не достигнет верхнего левого конца Главной последовательности. Далее звезда под влиянием поля тяготения сжимается (при этом нагревания не происходит, а ее вещество достигает плотности, уже не соответствующей плотности газа) и остывает, превращаясь в желтый карлик, как Солнце. Затем она станет красным карликом и погаснет совсем, став черным карликом — пеплом угасшей звезды. Так звезда скользит по Главной последовательности из верхнего левого угла к нижнему правому. Эту гипотезу, просуществовавшую всего 10 лет, назвали теорией скользящей эволюции звезд.

   

   

   Схема эволюции звезд сопоставлялась с  наблюдениями. Существование межзвездной  пыли доказал Р.Трюмплер (1930), исследуя звездные скопления. Схема эволюции такова. Облако газа и пыли (газопылевой комплекс) сжимается и нагревается, возникающие неоднородности приводят его в состояние гравитационной неустойчивости, и оно распадается на части. Пока фрагмент прозрачен для инфракрасного излучения, температура его внутренних слоев не повышается, сжатие идет ускоренно. С некоторого момента сжатие переходит в адиабатическое, объект становится непрозрачным, давление и температура внутри растут, замедляя сжатие. Так возникает протозвезда.

   Внутренние  слои разогреваются за счет энергии  гравитации падающего к центру вещества, объект как бы закипает, что отражается бурными вспышками на поверхности. Пример такой звезды — T Тельца. Это продолжается до тех пор, пока не будут достигнуты температуры, достаточные для начала термоядерных реакций. В соответствии со своей массой звезда занимает место на Главной последовательности. Солнце проделало такой путь почти за 2 млн лет. Звезда такой массы «сядет» в среднюю часть последовательности и останется там на срок до 106 лет. Так протозвезда станет звездой.

   По  мере выгорания водорода давление в  оболочке повышается, внешние слои расширяются и звезда начинает покидать Главную последовательность (двинется сначала чуть вправо и вниз), так как на расширение тратится некоторая энергия, и светимость звезды уменьшается (см. рис. 9.6). Равновесие достигается за счет формирования протяженной зоны конвекции, и звезда перейдет в группу красных гигантов. Огромная атмосфера красного гиганта не обеспечивает перенос энергии от внутренних слоев, и внутри звезды процессы пойдут адиабатически. Вблизи ядра температура может достичь необходимого значения для протекания термоядерных реакций, возможно, и с большим выходом энергии, чем у протон-протонных. Тогда холодная огромная атмосфера будет отброшена растущим давлением и превратится в расширяющуюся газовую туманность, которая может рассеяться в пространстве за сотни тысяч лет. Вероятно, наблюдаемая туманность в созвездии Лиры имеет такое же происхождение. Соединения ядер гелия возможны, но они дают меньше энергии (до 9 %), чем соединения ядер водорода. Звезда может продлить свое существование, если из углерода, получающегося при соединении трех атомов гелия, начнут возникать более сложные ядра. Конец наступает при синтезировании железа, которое имеет самые устойчивые ядра и уже не выделяет энергии (рис. 9.7).

4.2. Рождение частиц по современной модели развития Вселенной

   Однородное  микроволновое излучение, оставшееся от ранних стадий развития Вселенной, пронизывает пространство, что подтверждают и точные исследования, проведенные со спутников. Для понимания явлений космологии используют идеи, опирающиеся на физику элементарных частиц, которая, как и ядерная физика, сыграла большую роль при создании теорий и расширяющейся, и стационарной Вселенной. Особенно ценным для них оказался вклад Эйнштейна и Планка, которые в начале века сформулировали физику абсолютно черного излучения: поскольку на ранней стадии расширения должно быть равновесие между энергией и веществом, то энергия, выделившаяся при взрыве, должна иметь спектр черного излучения.

   Теория  синтеза химических элементов в  звездах была необходима. К началу 30-х гг. знали, что большинство  звезд состоят из водорода и гелия, но было неясно, откуда берется углерод. В 50-е гг. Хойл предложил реакцию образования углерода из трех ядер гелия в специфических условиях центра звезды. Возможность такой реакции подтвердил американский физик У. Фаулер на ускорителе высоких энергий, а Хойл и Солпитер подвели под эти эксперименты теорию. К 1957 г. Фаулер, Хойл, Маргарет и Джеффри Бербидж разработали теорию синтеза большинства химических элементов в звездных недрах из водорода и гелия. В звездной топке легкие элементы «сплавились» в тяжелые ядра, которые рассеялись в пространстве из-за взрыва Сверхновых или смерти красных гигантов (каким через 5 млрд лет станет Солнце). Затем цикл повторится, образуя звезды нового поколения.

   Однако  данная теория не могла объяснить  существование трех легких элементов  — лития, бериллия и бора. Из-за своей неустойчивой природы эти элементы должны образовываться в газе с низкой плотностью и низкими температурами и, первоначально присутствуя в молодых звездах, должны были распадаться при сжатии и нагревании звезды. Это оставалось загадкой. Хотя содержание каждого из них составляет менее 10-9 от количества водорода, уникальное происхождение этих элементов делает их «комментаторами» истории Вселенной. Подобные варианты схем рождения элементов создавались в нескольких местах, но не были привязаны к существующим во Вселенной количественным соотношениям элементов.

   Первичное вещество, из которого родилась Вселенная, Алфер и Герман назвали библейским словом «илем» (от греч. ylem — первичная материя). Эта первичная субстанция представляла собой нейтронный газ. Они считали, что в «первичном аду» родились тяжелые ядра путем присоединения свободных нейтронов, и этот процесс продолжался, пока их запас не истощился. Алфер и Герман не могли объяснить образование элементов тяжелее гелия, поскольку нет стабильных изотопов с массовыми числами 5 и 8, значит, нельзя получать тяжелые элементы последовательным добавлением нейтронов. После этого интерес к А-Б-Г-теории заметно остыл, и за десять лет (1953—1963) значительных исследований не было. Хойл в шутку назвал эту гипотезу «the big bang theory» — теорией громкого хлопка. Это понравилось конкурентам Хойла, а в России его перевели как «теория Большого Взрыва».

   Гипотезу  холодной Вселенной начал развивать  в 1962 г. Зельдович. На его взгляд, из теории горячей Вселенной следовали слишком большие плотность и температура излучения, не подтверждаемые данными радиоастрономии. Перебрав все возможные варианты, Зельдович остановился на гипотезе, согласно которой исходным веществом был холодный протон-электронный газ с примесью нейтрино, причем на каждый протон приходилось по одному электрону и одному нейтрино. Эту гипотезу Зельдович разрабатывал вплоть до обнаружения реликтового излучения.

   Простой расчет опубликовали еще до этого  открытия Хойл и Р.Тейлор (1964). Светимость нашей Галактики оценивают числом 1052 Дж/с. Если возраст Галактики 1010 лет, то при постоянной светимости она выделила за это время 2 • 1061 Дж. При образовании одного ядра гелия выделяется энергия 2,5 • 10-5 Дж. Значит, за время существования Галактики в ней образовалось 1066 а-частиц. При массе частицы 6,67 • 10-27 кг это составляет 7 • 1039 кг, а масса Галактики — 4 • 1041 кг. Поэтому к нашему времени отношение гелия к водороду Не/Н могло бы быть 7/400, или 1/57 — по массе, или 1/230 — по числу атомов. Это меньше наблюдаемого соотношения в 20 раз, так как из анализа состава звездных атмосфер, космических лучей получается Не/Н порядка 1/11. Уже из таких простых оценок понятно, как добиться согласия модели с данными соотношениями.

Информация о работе Контрольная работа по "Концепция современного естествознания"