Законы самосохранения

Автор работы: Пользователь скрыл имя, 07 Декабря 2012 в 16:25, доклад

Краткое описание

Научное и методологическое значение законов сохранения в достаточно полной мере выявляется на фоне исторического развития общей идеи сохранения. Открытие и обобщение законов сохранения происходило вместе с развитием всей физики, от первых робких догадок античных натурфилософов через классическую механику и электродинамику до теории относительности, квантовой механики и физики элементарных частиц.
Но остановимся на чуть-чуть. Более 10 раз было употреблено слово "закон". Так что же вообще это такое - закон? И что мы понимаем под законом сохранения?
В данной работе я и попытаюсь ответить на заданные вопросы. А поскольку закон сохранения охватывает практически все области науки, то предметом внимания будет служить лишь закон сохранения симметрии и закон сохранения в физике микромира.

Содержание

ВВЕДЕНИЕ........................................................................................................ 3
ГЛАВА I. ПОНЯТИЕ ЗАКОНА........................................................................5
ГЛАВА II. ПОНЯТИЕ СИММЕТРИИ И ЗАКОНЫ СОХРАНЕНИЯ................................................................................................. 8
§ 1.Принцип симметрии и его роль в познании............................................. 8
§ 2.Законы сохранения в микромире........................................................... ...10
§ 3.Специфические законы сохранения в теории элементарных частиц…. 14
ЗАКЛЮЧЕНИЕ.................................................................................................. 16
ЛИТЕРАТУРА.................................................................................................... 19

Вложенные файлы: 1 файл

ЛЮБА.doc

— 138.50 Кб (Скачать файл)

Среди более поздних естествоиспытателей  и философов, занимавшихся разработкой категории симметрии, следует назвать Р. Декарта и Г. Спенсера.

Р. Декарт писал: "Каково бы ни было то неравенство и беспорядок, которое, как мы можем предположить, были с самого началаустановлены богом между частицами материи, почти все эти частицы должны по законам природы приблизиться к средней величине и среднему движению". Таким образом, по Декарту, бог, создав асимметричные тела, придал им «естественное» круговое движение, в результате которого они совершенствовались в тела симметричные.

Характерно, что к наиболее интересным результатам наука приходила именно тогда, когда устанавливала факты нарушения симметрии. Следствия, вытекающие из принципа симметрии, интенсивно разрабатывались физикам в прошлом веке и привели к ряду важныхрезультатов. Такими следствиями законов симметрии являются прежде всего законы сохранения классической физики.

Понятия симметрии и асимметрии, которыми пользуются в частных науках, далеко не полно отражают существующую в реальном мире симметрию и асимметрию; они развиваются и обогащаются. Как показывает история науки, это понятия, с помощью которых можно объяснить многие явления и предсказывать существование новых, еще не познанных свойств природы.

Так что же такое симметрия и  асимметрия?

В настоящее время в естествознании преобладают определения категорий  симметрии и асимметрии на основании перечисления определенных признаков. Например, симметрия определяется как совокупность  свойств: порядка, однородности, соразмерности, гармоничности. Под асимметрией же обычно понимают отсутствие признаков симметрии - беспорядок, несоразмерность, неоднородность и т. д. Все признаки симметрии в такого рода ее определениях, естественно, рассматриваются равноправными,одинаково существенными, и  в отдельных конкретных случаях, при установлении симметрии какого-то явления, можно пользоваться любым из них. Так, в одних случаях симметрия - это однородность, в других - соразмерность и т.д. По мере развития нашего познания к определению симметрии можно прибавлять все новые и новые признаки. То же самое можно сказать и о существующих в частных науках определениях асимметрии. 

Общие понятия симметрии и асимметрии должны быть такими, чтобы под них  подошли все известные и даже неизвестные н настоящее время виды симметрии и асимметрии.

Непосредственной логической основой  для определения понятий симметрии и асимметрии, по мнению В.С.Готта, является диалектикатождества и различия. А в диалектике, как мы уже знаем, тождество и различие рассматриваются лишь в определенных отношениях, во взаимодействии, во включении различия в тождество, а тождества в различие.

Диалектическое понимание тождества  предполагает обязательное признание  следующего: тождество не существует вне различия и противоположности, тождество возникает и исчезает, тождество существует только в определенных отношениях и возникает при определенных условиях; наиболее полным выражением тождества является полное превращение противоположностей друг в друга. 

Отсюда следует, что в процесса познания явлений мира нельзя ограничиваться только установлением тождества  между ними, но необходимо раскрывать, как возникает это тождество, при каких условиях и в каких отношениях оно существует. На основе этой характеристики диалектики тождества и различия нами В.С.Готтом предложены следующие определения симметрии и асимметрии: 

Симметрия - это категория, обозначающая процесс существования и становления тождественных моментов, в определенных условиях и в определенных отношениях между различными и противоположными состояниями явлений мира.

Из данного определения понятия  симметрии возникают такие методологические требования: при изучении явления, события, состояния движущейся материи прежде всего необходимо установить свойственные им различия и противоположности, затем уже раскрыть, что в нем есть тождественного и при каких условиях и в каких отношениях это тождественное возникает, существует и исчезает. Отсюда следуют и некоторые общие правила для формулирования наших гипотез (это правило часто относят к научной интуиции). Если установлено существование какого-то явления, состояния или каких-то их свойств и параметров, то необходимо предполагать и  существование противоположных явлений, противоположных  свойств и параметров; в свою очередь, необходимо далее постулировать, что между противоположными  условиями в каких-то отношениях и условиях возникают и существуют тождественные моменты. В этих двух правилах и выражается в общем виде применение понятия симметрии в конкретных исследованиях.

Асимметрией называется категория, которая обозначает существование и становление в определенных условиях и отношениях различий и противоположностей внутри единства, тождества, цельности явлений мира.

Во всех реальных явлениях симметрия  и асимметрия сочетаются друг с другом. Прежде чем искать симметрию, нужно  найти асимметрию. Верным будет и  обратное.

 

§ 2.Законы сохранения в микромире.

Если механизм возникновения альфа- и гамма-излучения без особых трудностей был объяснен квантовой  механикой, то испускание b-частиц (электронов)  оказалось одной из труднейших для понимания проблем ядерной физики. Действительно, при a-распаде ядро атома испускает a-частицу, представляющую собой ядро  гелия, состоящее из двух протонов и двух  нейтронов. Таким образом, при a-распаде не образуется новых частиц, поскольку и протоны и нейтроны уже имелись в ядре. Был понят и процесс g-излучения, при котором из ядра вылетала новая (не бывшая, ранее в нем) частица - g-квант (фотон). Он был связан с тем, что путем g-радиоактивности ядро атома освобождалось от избыточной энергии аналогично тому, как рождался фотон в атоме при переходе электрона с верхней орбиты на нижнюю. Как a-, так и g-радиоактивность протекала в полном соответствии с законом сохранения энергии, импульса и момента количества движения.

Что же касается b-распада, то это явление оказалось значительно более сложным и поставило перед учеными ряд проблем. Прежде всего потому, что при этом виде радиоактивности из ядра вылетает ранее не находившаяся там b-частица - электрон. Когда к этому явлению были применены законы сохранения, то выявилась совершенно необычная ситуация: энергия, импульс и момент количества движения начального ядра не были равны, импульсу и моменту количества движения продуктов распада вновь образовавшегося ядра и испущенного  электрона. Баланс указанных величин не только почти никогда не сходился, но и каждый раз давал различную величину. Ядро одного и того же радиоактивного изотопа испускает электроны различной энергии, начиная от некоторой максимальной до нулевой. При этом оказывается, что образующееся конечное ядро имеет всегда одну и ту же энергию. Начальное же ядро, превращаясь результате радиоактивного распада в новое ядро, теряет одну и ту же энергию, в точности равную максимально возможной энергии испущенного электрона. Возник, естественно, вопрос: куда девается энергия в тех случаях, когда энергия электрона меньше максимальной?

Это был отнюдь не единственный сюрприз, преподнесенный физикам b-радиоактивностью. Когда подсчитали импульс исходного ядра и его момент количество движения и сравнили с импульсом и моментом количества движения вновь образовавшегося ядра и электрона, то оказалось, что и здесь баланс не сходится. Таким образом, в процессе b-распада как будто нарушались все три классических закона сохранения, между тем как во всех других известных явлениях микромира они неукоснительно соблюдались

Для объяснения загадки b-распада было предложено много гипотез, имеющих в настоящее время лишь, исторический интерес. В 1922 г. Л. Мейтнер предложила, что b-электроны растрачивают часть своей энергии внутри атома, когда пролетают через его электронную оболочку. Эта гипотеза подверглась строгой опытной проверке в 1927 г. Эллисом и Вустером. Опыт этих ученых состоял в следующем: радиоактивный препарат RаЕ в толстостенной свинцовой оболочке помещался в медный калориметр. Количество энергии, выделенной препаратом за определенный промежуток времени, точно измерялось. Согласно гипотезе Мейтнер следовало ожидать, что средняя энергия, приходящаяся на один акт распада, должна была бы равняться максимальной энергии в b-спектре. В действительности же эта энергия оказалась равной средней энергии, составляющей около одной трети от величины граничной энергии b-частиц. Еще более тщательные опыты, осуществленные в 1930 г. самой Мейтнер совместно с Ортманом, подтвердили результат Эллиса и Вустера. Таким образом, вновь было установлено, что часть энергии ядерного превращения бесследно исчезает. 

Единственным выходом  из положения представлялось допущение  о том, что в процессе b-распада закон сохранения энергии нарушается. Именно такой выход и предложил Бор в 1930 г. Гипотеза Бора, как и рассмотренная выше, заключалась в предположении, что закон сохранения энергии нарушается в элементарных актах b-распада, но выполняется статистически для достаточно большого числа таких актов. Во имя решения одной проблемы Бор предлагал столь большую  жертву, что если бы она оправдалась, то это означало бы по существу крушение не только физики, но и всего естествознания в целом. Ибо с момента  признания закона сохранения и превращения энергии как основы физического естествознания науке не был известен ни один факт, который противоречил бы этому закону. После  исследований Комптона и других физиков не было  сомнений в выполнении этого закона и в области микромира.

Гипотеза Бора о статистическом выполнении закона сохранения энергии в b-распаде была  опровергнута в 1933 г. опытами Эллиса и Мотта.

Сразу же после появления  она  встретила дружные возражения физиков. Уж слишком велика была жертва. Один из основоположников современной теории b-распада швейцарский физик В. Паули писал по этому исподу: "На мой взгляд, эта гипотеза не только неудовлетворительна, но даже  недопустима. Прежде всего, в этих процессах электрический заряд сохраняется, а я не вижу оснований считать сохранение заряда более фундаментальным, чем сохранение анергии и импульса".

В 1931 г. на физической конференции в Пасадене Паули доложил ученым о своей интерпретации b-распада: "Законы сохранения выполняются, так как испускание b-частиц сопровождается проникающей радиацией из нейтральных частиц... Сумма энергий b-частицы и нейтральной частицы..., испущенных ядром в отдельном акте, равна энергии, соответствующей верхней границе b-спектра. Само собой разумеется,  что мы допускаем во всех элементарных процессах не только сохранение энергии, но и сохранение импульса и момента количества движения".

Поскольку в результате b-распада заряд ядра изменяется на единицу, предполагаемая частица должна быть электрически нейтральной. Такой частицей мог бы быть и фотон, но эту возможность отрицал опыт Эллиса и Вустера. Масса ядра при b-распаде практически не изменяется, и поэтому частица должна была обладать ничтожно малой массой. Таким образом, постулированная Паули частица по споим свойствам отличалась от известных в то время частиц. Позже она была названа нейтрино. Введение этой гипотетической частицы объясняло парадоксы b-распада. Указанные свойства нейтрино приводили к тому, что оно совершенно свободно проходило сквозь стенки приборов, не испытывая электромагнитных взаимодействий, и поэтому уносимая им энергия не могла быть, естественно, учтена.

Гипотеза нейтрино позволила также отстоять и закон сохранения момента количества движения в ядре. Трудности с этим законом возникли в 1932 г., когда В.Гейзенбергом и Л. Иваненко была предложена нейтронно-протонная схема строения атомов ядра. Согласно этой схеме электронов, в ядре быть не должно, они рождаются в процессе b-распада. Теория ядра приводила к заключению, что спин исходного ядра в единицах h/2p должен выражаться целым числом. Между тем спин электрона равен половине, а орбитальный момент количества движения электронов мог быть только целым числом h/2p. Поэтому  получалось, что в результате b-распада целый спин ядра должен был бы переходить в полуцелый и наоборот. Это означало нарушение закона сохранения момента количества движения. Эта трудность сейчас устранялась,  если нейтрино приписать полуцелый спин (1/2).

Таким образом, согласно гипотезе Паули нейтрино явилось той частицей, которая компенсировала как недостающую энергию, так и спин. В дальнейшем был уточнен и закон сохранения импульса на основе допущения, что импульс ядра отдачи должен быть равен по величине и направлен противоположно  суммарному импульсу электрона и нейтрино.

В одном из своих более  поздних выступлений Паули подчеркнул, что он всегда был против того, чтобы решать какие бы то ни было трудности в физических проблемах путем отказа от закона сохранения энергии: "Во-первых, я считаю, что аналогия между законами сохранения энергии и сохранения электрического заряда имеет глубокое значение и может являться надежной  руководящей нитью. Вряд ли можно, отказавшись  от закона сохранения энергии, сохранить закон сохранения электрического заряда, а этот последний закон никогда еще не приводил ни к каким затруднениям. Поэтому я с самого начала отказывался верить в нарушение сохранения энергии".

Гипотеза Паули о  нейтрино была изложена  впервые в печати с его разрешения двумя участниками семинара Карлсоном и Оппенгеймером в 1932г., а год спустя автор ее, выступая на седьмом Сольвеевском конгрессе, посвященном теме "Строение и свойства атомных ядер", обстоятельно доложил участникам конгресса о тех предпосылках, которые привели его к столь необычной гипотезе).

В 1934 г. итальянский физик Э. Ферми на основе гипотезы о нейтрино и протонно-нейтронной схемы строения атомного ядра создал теорию b-распада, которая успешно объяснила все основные черты этого процесса. В последующие годы много усилий было затраченона экспериментальное доказательство  существования нейтрино. Сначала эти доказательства были получены косвенно, а в период 1953-1955 гг. путем постановки довольно сложных экспериментов американские физики Коуэн и Ройнее обнаружили нейтрино в свободном состоянии.

Информация о работе Законы самосохранения