Динамические и статистические законы природы

Автор работы: Пользователь скрыл имя, 24 Сентября 2013 в 00:57, реферат

Краткое описание

В динамических теориях явления природы подчиняются однозначным (динамическим) закономерностям, а статистические теории основаны на объяснении процессов вероятностными (статистическими) закономерностями.
Свойственные для объектов микромира статистические закономерности, а для объектов макромира динамические закономерности ярко демонстрируют диалектический характер развития природных явлений и процессов. Кроме того, раскрытие статистических и динамических закономерностей демонстрирует диалектическую связь между случайным и необходимым.

Содержание

Введение………………………………………………………………………………2
Детерминизм процессов природы……………………………………………....2
Динамические закономерности…………………………………………………4
Статистические закономерности………………………………………………..7
Заключение ...………………………………………………………………………...8
Список использованных источников и литературы………………

Вложенные файлы: 1 файл

динамические и статистические законы природы.docx

— 34.19 Кб (Скачать файл)

Содержание

Введение………………………………………………………………………………2

  1. Детерминизм процессов природы……………………………………………....2
  2. Динамические закономерности…………………………………………………4
  3. Статистические закономерности………………………………………………..7

Заключение ...………………………………………………………………………...8

Список использованных источников и литературы……………………………...11

 

Введение

 

Своеобразным отображением диалектичности явлений и процессов  природы является раскрытие динамических и статистических закономерностей в природе.

Микромир - это мир мельчайших частиц (молекул, атомов и т.д.), а  макромир - это мир крупных тел, состоящих из множества мельчайших частиц.

В результате изучения движения микро- и макросистем в природе  были выявлены многие закономерности протекания этих процессов. Изучением  движения макросистем занимается раздел механики динамика. Классическая динамика базируется на 3-х основных законах ньютоновской механики. Используя эти законы, динамика способна решить задачи по определению силы, под действием которой происходит движение тела, если известен закон движения данного тела, а также определить закон движения тела, если известны силы, действующие на него.

Динамические законы приложимы  к исследованию движения всех объектов макромира: твердым, жидким и газообразным телам, упругим и деформируемым, к телам переменной массы.

В микромире господствуют статистические законы, которые можно  применять только к большим совокупностям, но не к отдельным индивидуумам. Квантовая механика отказывается от поиска индивидуальных законов элементарных частиц и устанавливает статистические законы.

В динамических теориях явления  природы подчиняются однозначным (динамическим) закономерностям, а статистические теории основаны на объяснении процессов вероятностными (статистическими) закономерностями.

Свойственные для объектов микромира статистические закономерности, а для объектов макромира динамические закономерности ярко демонстрируют диалектический характер развития природных явлений и процессов. Кроме того, раскрытие статистических и динамических закономерностей демонстрирует диалектическую связь между случайным и необходимым.

 

  1. Детерминизм процессов природы

 

Детерминизм в современной  науке определяется как учение о  всеобщей, закономерной связи явлений  и процесс окружающего мира. Наличие  таких связей является доказательством материального единства мира и существования в мире общих закономерностей. Очень часто детерминизм отождествляется с причинностью, но такой взгляд нельзя считать правильным хотя бы потому, что причинность выступает как одна из форм проявления детерминизма.

Законы, с которыми имеет  дело классическая механика, имеют  универсальный характер, т. е. они относятся к изучаемым объектам природы. Отличительная особенность такого рода законов состоит в том, что предсказания, полученные на их основе, имеют достоверный и однозначный характер. Наиболее ярко они проявились после того, как на основе закона всемирного тяготения, изложенного И. Ньютоном в 1671 году. В «Математических началах натуральной философии», и законов механики возникла небесная механика. На основе законов небесной механики были вычислены отклонения в движении Урана, вызванные возмущающим влиянием неизвестной тогда планеты.

Определив величину возмущения, независимо друг от друга по законам  механики положение неизвестной планеты рассчитали Д. Адамс и У. Леверье. Всего на угловом расстоянии в 1° от рассчитанного ими положения И. Галле обнаружил планету Нептун. Открытие Нептуна блестяще подтвердило справедливость законов небесной механики и наличие в природе однозначных причинных связей. Это позволило французскому механику П. Лапласу сказать: дайте мне начальные условия и я, с помощью законов механики, предскажу дальнейшее развитие событий. Это вошло в историю как лапласовый, или механистический детерминизм, который допускает однозначные причинные связи в явлениях природы.

Суть его можно понять из высказывания Лапласа: Современные  события имеют с событиями  предшествующими связь, основанную на очевидном принципе, что никакой предмет не может начать быть без причины, которая его произвела...

Наряду с ними в науке  с середины XIX века стали все шире применяться законы другого типа. Их предсказания не являются однозначными, а только вероятностными. Вероятностными они называются потому, что заключения, основанные на них, не следуют логически из имеющейся информации, а потому не являются достоверными и однозначными. Информация при этом носит статистический характер, законы, выражающие эти процессы, называются статистическими законами, и этот термин получил в науке большое распространение.

В классической науке статистические законы не признавали подлинными законами, так как ученые в прошлом предполагали, что за ними должны стоять такие же универсальные законы, как закон всемирного тяготения Ньютона, который считался образцом детерминистического закона, поскольку он обеспечивает точные и достоверные предсказания приливов и отливов, солнечных и лунных затмений и других явлений природы. Статистические же законы признавались в качестве удобных вспомогательных средств исследования, дающих возможность представить в компактной и удобной форме всю имеющуюся информацию о каком-либо предмете исследования. Подлинными законами считались именно детерминистические законы, обеспечивающие точные и достоверные предсказания. Эта терминология сохранилась до настоящего времени, когда статистические, или вероятностные, законы квалифицируются как индетерминистические, с чем вряд ли можно согласиться.

Отношение к статистическим законам принципиально изменилось после открытия законов квантовой  механики, предсказания которых имеют  существенно вероятностный характер.

Таким образом, исторически  детерминизм выступает в двух следующих формах:

1) лапласовый, или механистический, детерминизм, в основе которого лежат универсальные законы классической физики;

2) вероятностный детерминизм,  опирающийся на статистические  законы и законы квантовой физики.

Таким образом, XIX столетие получается столетием динамических теорий; ХХ столетие - столетием статистических теорий. Значит, динамические теории соответствовали первому этапу в процессе познания природы человеком, тогда как на следующем этапе главную роль стали играть статистические теории.

В современной концепции  детерминизма органически сочетаются необходимость и случайность. Признание самостоятельности статистических, или вероятностных, законов, отображающих существование случайных событий в мире, дополняет прежнюю картину строго детерминистического мира. В результате в новой современной картине мира необходимость и случайность выступают как взаимосвязанные и дополняющие друг друга аспекты объяснения окружающего мира.

 

  1.  Динамические закономерности

 

К динамическим теориям относятся  классическая механика (создана в XVII-XVIII веках), механика сплошных сред, т. е. гидродинамика (XVIII век), теория упругости (начало XIX века), классическая термодинамика (XIX век), электродинамика (XIX век), специальная и общая теория относительности (начало ХХ века).

Динамические законы приложимы  к исследованию движения всех объектов макромира: твердым, жидким и газообразным телам, упругим и деформируемым, к телам переменной массы. Макромир - это мир крупных тел, состоящих из множества мельчайших частиц.

Изучением движения макросистем  занимается раздел механики динамика. Классическая динамика базируется на 3-х основных законах ньютоновской механики. Используя эти законы, динамика способна решить задачи по определению силы, под действием которой происходит движение тела, если известен закон движения данного тела, а также определить закон движения тела, если известны силы, действующие на него.

Физические явления в  механике, электромагнетизме и теории относительности в основном подчиняются, так называемым динамическим закономерностям. Динамические законы отражают однозначные причинно-следственные связи, подчиняющиеся детерминизму Лапласа. Причина- Следствие.

Динамические законы - это  законы Ньютона, уравнения Максвелла, уравнения теории относительности. Классическая механика Ньютона. Основу механики Ньютона составляют закон инерции Галилея, два закона открытые Ньютоном, и закон Всемирного тяготения, открытый также Исааком Ньютоном.

Согласно сформулированному  Галилеем закону инерции, тело сохраняет  состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не выведет его из этого состояния.

Этот закон устанавливает  связь между массой тела, силой  и ускорением. Устанавливает связь между силой действия и силой противодействия.

В качестве IV закона выступает  закон всемирного тяготения. Два  любых тела притягиваются друг к  другу с силой пропорциональной массе сил и обратно пропорциональной квадрату расстояния между центрами тел.

Уравнения Максвелла - наиболее общие уравнения для электрических  и магнитных полей в покоящихся средах. В учении об электромагнетизме  они играют такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле связано с порождаемым им магнитным, то есть электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.

Из уравнений Максвелла  следует, что источниками электрического поля могут быть либо электрические  заряды, либо изменяющиеся во времени  магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.

Уравнения теории относительности

Специальная теория относительности, принципы которой сформулировал  в 1905 году А. Эйнштейн, представляет собой  современную физическую теорию пространства и времени, в которой, как и  в классической ньютоновской механике, предполагается, что время однородно, а пространство однородно и изотропно. Специальная теория часто называется релятивистской теорией, а специфические явления, описываемые этой теорией - релятивистским эффектом (эффект замедления времени).

В основе специальной теории относительности лежат постулаты  Эйнштейна:

  • принцип относительности: никакие опыты (механические, электрические, оптические), проведенные в данной инерциальной системе отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы к другой;
  • принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Первый постулат, являясь  обобщением механического принципа относительности Галилея на любые физические процессы, утверждает таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы отсчета совершенно равноправны, т. е. явления механические, электродинамические, оптические и др. во всех инерциальных системах отсчета протекают одинаково.

Согласно второму постулату, постоянство скорости света в  вакууме - фундаментальное свойство природы.

Общая теория относительности, называемая иногда теорией тяготения - результат развития специальной теории относительности. Из нее вытекает, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени может изменяться от одной области к другой в зависимости от концентрации масс в этих областях и их движения.

 

  1. Статистические закономерности

 

К статистическим теориям  относятся статистическая механика (вторая половина XIX века), микроскопическая электродинамика (начало ХХ века), квантовая  механика (первая треть ХХ века).

В микромире господствуют статистические законы, которые можно  применять только к большим совокупностям, но не к отдельным индивидуумам. Микромир - это мир мельчайших частиц (молекул, атомов и т.д.) Квантовая механика отказывается от поиска индивидуальных законов элементарных частиц и устанавливает статистические законы.

При попытке использовать однозначные причинно-следственные связи и закономерности к некоторым  физическим процессам обнаружилась их недееспособность. Появились многозначные причинно-следственные связи, подчиняющиеся вероятностному детерминизму. Следствие - причина, следствие - следствие, причина - следствие, причина - причина.

Статистические закономерности и законы используют теорию вероятностей. Это наука о случайных процессах. В этих рамках следует пояснить следующие понятия:

Достоверные события, невозможные  события и промежуточные между  достоверными и невозможными случайными событиями.

Количественно случайные  события оцениваются при помощи вероятности:

    • Статистическая вероятность.

Достоверные и невозможные  события можно рассматривать  как частные случаи случайных  событий:

Информация о работе Динамические и статистические законы природы