Организация транспортной сети SDH в городе Темиртау на базе мультиплексоров Huawei

Автор работы: Пользователь скрыл имя, 07 Сентября 2014 в 20:23, отчет по практике

Краткое описание

На сегодняшний день технология SDH заслуженно считается не только перспективной, но и достаточно апробированной технологией для создания транспортных сетей. Технология SDH обладает рядом важных достоинств с пользовательской, эксплуатационной и инвестиционной точек зрения:
умеренная структурная сложность, снижающая затраты на монтаж, эксплуатацию и развитие сети, в том числе подключение новых узлов;
широкий диапазон возможных скоростей – от 155,520 Мбит/с (STM-1) до 2,488 Гбит/с (STM-16) и выше;
возможность интеграции с каналами PDH, поскольку цифровые каналы PDH являются входными каналами для сетей SDH;
высокая надежность системы благодаря централизованному мониторингу и управлению, а также возможности использования резервных каналов;

Вложенные файлы: 1 файл

Отчет по преддипломной практики Бухов.doc

— 699.00 Кб (Скачать файл)

 

2 Разработка схемы включения станций в проектируемую сеть SDH города Темиртау

 

 

Разработка общей схемы заключается в последовательном решении задач, поставленных перед разработчиками. Схема решения включает следующие этапы:

  • выбор топологии;
  • выбор архитектуры включения;
  • выбор требуемого уровня и числа мультиплексоров;
  • конфигурация мультиплексорных узлов и составление спецификации оборудования.

 

 

2.1 Выбор  топологии включения станций  проектируемой сети SDH г. Темиртау

 

 

К любому решению, в том числе и решению выбора топологии сети, можно подойти несколькими путями. Задача сводится к тому, чтобы выбрать наиболее оптимальный из предложенных вариантов.

Прежде всего, необходимо рассмотреть все виды существующих топологий SDH и особенности их выбора. Для того чтобы спроектировать сеть в целом нужно пройти несколько этапов, на каждом из которых решается та или иная функциональная задача. Это задачи выбора топологии сети, выбора оборудования узлов сети, формирование сетей управления и синхронизации. Задача выбора топологии сети может быть решена достаточно легко, если знать возможный набор стандартных базовых топологий, из которых может быть составлена топология сети в целом.

 

2.1.1 Сегмент сети, связывающий два узла А и В, или топология "точка-точка", является наиболее простым примером базовой топологии SDH сети в соответствии с рисунком 2.1. Она может быть реализована с помощью терминальных мультиплексоров ТМ, как по схеме без резервирования канала приема/передачи, так и по схеме со стопроцентным резервированием типа 1+1, использующей основной и резервный электрические или оптические агрегатные выходы (каналы приема/передачи). При выходе из строя основного канала сеть в десятки миллисекунд автоматически переходит на резервный.

Несмотря на свою простоту, именно эта базовая топология наиболее широко используется при передаче больших потоков данных по высокоскоростным магистральным каналам, например, по трансокеанским подводным кабелям, обслуживающим цифровой телефонный трафик.

Рисунок 2.1 – Топология "точка – точка", реализованная с использованием ТМ

 

Эту же топологию используют для отладки сети при переходе к новой более высокой скорости в иерархии SDH, например, с 622 Мбт/с (STM-4) на 2,5 Гбт/с (STM-16) или с 2,5 (STM-16) на 10 Гбт/с (STM-64). Она же используется как составная часть радиально-кольцевой топологии (используется в качестве радиусов) и является основой для топологии "последовательная линейная цепь". С другой стороны, топологию "точка-точка" с резервированием можно рассматривать как вырожденный вариант топологии "кольцо".

2.1.2 Топология "последовательная линейная  цепь" – это базовая топология, которая используется тогда, когда интенсивность графика в сети не так велика и существует необходимость ответвлений в ряде точек на линии, где могут вводиться и выводиться каналы доступа. Она реализуется с использованием как терминальных мультиплексоров на обоих концах цепи, так и мультиплексоров ввода/вывода в точках ответвлений. Эта топология напоминает последовательную линейную цепь, где каждый мультиплексор ввода/вывода является отдельным ее звеном. Она может быть представлена либо в виде простой последовательной линейной цепи без резервирования, в соответствии с рисунком 2.2, либо более сложной цепью с резервированием типа 1+1, в соответствии с рисунком 2.3. Последний вариант топологии часто называют упрощенным кольцом.

Рисунок 2.2 – Топология "последовательная линейная цепь", реализованная на ТМ и TDM

 

Рисунок 2.3 – Топология "последовательная линейная цепь" типа "уплощенное кольцо" с защитой 1+1

 

2.1.3 Топология "звезда" реализует  функцию концентратора. В этой топологии один из удаленных узлов сети, связанный с центром коммутации (например, цифровой АТС) или узлом сети SDH на центральном кольце, играет роль концентратора, или хаба, где часть графика может быть выведена на терминалы пользователей, тогда как оставшаяся его часть может быть распределена по другим удаленным узлам, в соответствии с рисунком 2.4. Ясно, что этот концентратор должен быть активным и интеллектуальным (в терминологии локальных сетей), т.е. быть мультиплексором ввода/вывода с развитыми возможностями кросс-коммутации. Иногда такую схему называют оптическим концентратором (хабом), если на его входы подаются частично заполненные потоки уровня STM-N (или потоки уровня на ступень ниже), а его выход соответствует STM-N. Фактически эта топология напоминает топологию "звезда", где в качестве центрального узла используется мультиплексор SDH.

 

Рисунок 2.4 – Топология "звезда" с мультиплексором в качестве концентратора

 

2.1.4 Топология "кольцо", в соответствии с рисунком 2.5, широко используется для построения SDH сетей первых двух уровней SDH иерархии (155 и 622 Мбт/с). Основное преимущество этой топологии – легкость организации защиты типа 1+1, благодаря наличию в синхронных мультиплексорах SMUX двух пар (основной и резервной) оптических агрегатных выходов (каналов приема/передачи): восток–запад, дающих возможность формирования двойного кольца со встречными потоками, потоки показаны стрелками в соответствии с рисунком 2.5.

Кольцевая топология обладает рядом интересных свойств, позволяющих сети самовосстанавливаться, т.е. быть защищенной от некоторых достаточно характерных типов отказов.

Рисунок 2.5 – Топология "кольцо" с защитой 1+1 на уровне трибных блоков TU-n

 

Топология «кольцо» с защитой 1+1 на уровне трибных блоков представляет наиболее интересное решение, т.к. обеспечивает максимальную защиту, проключаемых по сети потоков. Поэтому в дальнейшем при создании архитектуры темиртауской сети SDH будем ориентироваться на данную топологию.

2.1.5 Архитектурные решения при проектировании сети могут быть сформированы на базе использования рассмотренных выше элементарных топологий сети в качестве ее отдельных сегментов. Как правило, ярко выраженные топологии редко встречаются в реальных сетях. Наиболее часто используется сочетание той или иной из рассмотренных выше топологий.

В соответствии с рисунком 2.6 приведен один из вариантов построения сети SDH города Темиртау. В данном варианте сеть фактически построена на базе использования двух базовых топологий: "точка-точка", многократное использование которой дает топологию "звезда" или "концентратор". Так как станция АТС-91 самая крупная и вся межстанционная связь построена через нее, то в качестве концентратора выбрана именно эта станция. Такое архитектурное решение допустимо, однако имеет свои недостатки. Все включаемые в сеть станции с концентратором соединяются лишь одной кабельной линией. Любое повреждение оптической линии, приведет к потери связи со станцией, соединенной с АТС-91. Выбрав защиту 1+1, мы лишь защитим проключаемые потоки Е1 при повреждении единичного волокна.

 

 

Рисунок 2.6 – Радиальное включение станций г. Темиртау в сеть SDH

 

Защита 1+1 соответствует двум путям проключения потока: основному и защитному. При повреждении одного из путей система автоматически переключается на защитный. Однако при использовании одного кабеля, защитный и основной пути оказываются проходящими  вместе. При повреждении волокна такая защита сработает, однако при повреждении всего кабеля, что довольно часто наблюдается в наших сетях, данная защита не поможет.

Для того чтобы избежать проблем данного построения, рассмотрим еще один вариант. Замкнув все станции в общее кольцо мы полностью защитим проключаемые потоки Е1. В соответствии с рисунком 2.7 в рассматриваемой нами архитектуре наблюдается сочетание топологий «Кольца» и «Звезды», а архитектура является «ячеистой».

 

 

Рисунок 2.7 – Звездно-кольцевое включение станций города Темиртау

 

Такой вариант выбирают в основном только в тех случаях, когда суммарная емкость станций не позволяют вместить их в одну линию, поэтому требуются дополнительные оптические линии. Соответственно этот вариант более дорогостоящий. Однако существующая схема межстанционной связи города Темиртау оперирует малым количеством потоков Е1, не требующим большого количества оптических соеденительных линий. Поэтому целесообразней использовать не полное кольцо, а отдельные его сектора или ячейки. При этом есть возможность использовать уже проложенные оптические одномодовые кабели.

Отдельно необходимо упомянуть о выносной станции от АТС-93 – RSU-934. Данная станция сильно удалена: от АТС-91 – 5 км, от АТС-93 – 7 км. При этом для соединения с основной станцией ей требуется всего 4 потока Е1. Прокладывать 5 км оптического кабеля ради 4 потоков крайне не экономично. Поэтому лучше использовать старые системы передач PDH – РРЛ NEC “Pasolink”, не включая данную станцию в SDH.

Еще одна станция, которую следует исключить из проектируемой сети – жто станция УАТС-6, которая, как уже говорилось ранее обслуживается совершенно независимой фирмой «Испат-кармет». Одномодовый оптический кабель ОМЗКГМ между АТС-91 и УАТС-6 принадлежит данной организации вместе с оконечным оборудованием ОЛТ2´16, что вполне достаточно для емкости данной станции. Поэтому в проект разработки сети SDH станция УАТС-6 включатся не будет.

В соответствии с рисунком 2.8 наиболее подходящий вариант включения станций г. Темиртау в сеть SDH. Эта архитектура наиболее привлекательная из всех трех приведенных архитектур по нескольким причинам. Во-первых, есть возможность изпользовать полную защиту потоков Е1 – 1+1. Во-вторых, отсутствуют дополнительные внутренние оптические линиии и соответсвенно отсутствуют затраты на них..

Однако окончательно остановится на той или иной из приведенных архитектур можно только после выбора оборудования, которое будет установленно на включаемых станциях. Для этого следует рассмотреть возможные типы мультиплексоров SDH.

 

 

Рисунок 2.8 – Кольцевая схема включения станций г. Темиртау

 

 

2.2 Выбор  типа оборудования SDH

 

 

Как видно из анализа топологии включение станций Темиртау в сеть SDH можно выполнить несколькими вариантами. В каждой из приведенных выше топологий, возможно, использовать различные виды оборудования.

Основным функциональным модулем сетей SDH является мультиплексор. В дальнейшем мы будем использовать этот термин как для собственно мультиплексоров, служащих для сборки (мультиплексирования) высокоскоростного потока из низкоскоростных, так и для демультиплексоров, служащих для разборки (демультиплексирования) высокоскоростного потока с целью выделения низкоскоростных потоков.

Мультиплексоры SDH в отличие от обычных мультиплексоров, используемых, например, в сетях PDH, выполняют как функции собственно мультиплексора, так и функции устройств терминального доступа, позволяя подключать низкоскоростные каналы PDH иерархии непосредственно к своим входным портам. Они являются более универсальными и гибкими устройствами, позволяющими решать практически все перечисленные выше задачи, т.е. кроме задачи мультиплексирования выполнять еще и задачи коммутации, концентрации и регенерации. Это оказывается возможным в силу модульной конструкции SDH мультиплексора – SMUX, при которой выполняемые функции определяются лишь возможностями системы управления и составом модулей, включенных в спецификацию мультиплексора. Принято, однако, выделять два основных типа SDH мультиплексора: терминальный мультиплексор и мультиплексор ввода/вывода.

Терминальный мультиплексор ТМ является мультиплексором и оконечным устройством SDH сети с каналами доступа, соответствующими трибам PDH и SDH иерархий в соответствии с рисунком 2.9. Терминальный мультиплексор может или вводить каналы, т.е. коммутировать их со входа трибного интерфейса на линейный выход, или выводить каналы, т.е. коммутировать их с линейного входа на выход трибного интерфейса. Он может также осуществлять локальную коммутацию входа одного трибного интерфейса на выход другого трибного интерфейса. Как правило, эта коммутация ограничена трибами 1,5 и 2 Мбит/с.

Рисунок 2.9 – Синхронный мультиплексор (SMUX)

 

Для мультиплексора максимального на данный момент действующего уровня SDH иерархии (STM-64), имеющего скорость выходного потока 10 Гбт/с, максимально полный набор каналов доступа может включать PDH трибы 1.5, 2, 6, 34, 45, 140 Мбит/с и SDH трибы 155, 622 Мбт/с и 2,5 Гбт/с, соответствующие STM-1,4,16. Если PDH трибы являются "электрическими", т.е. использующими электрический сигнал для передачи данных, то SDH трибы могут быть как электрическими (STM-1), так и оптическими (STM-1,4,16). Для мультиплексоров SDH уровня STM-16 из этого набора исключается триб 2,5 Гбт/с, для уровня STM-4 из него исключается триб 622 Мбт/с, и, наконец, для первого уровня – триб 155 Мбт/с. Ясно, что конкретный мультиплексор может и не иметь полного набора трибов для использования в качестве каналов доступа. Это определяется не только пожеланиями заказчика, но и возможностями фирмы-изготовителя.

Другой важной особенностью SDH мультиплексора является наличие двух оптических линейных выходов (каналов приема/передачи), называемых агрегатными выходами и используемых для создания режима стопроцентного резервирования, или защиты по схеме 1+1 с целью повышения надежности. Эти выходы (в зависимости от топологии сети) могут называться основными и резервными (линейная топология) или восточными и западными (кольцевая топология). Нужно заметить, что термины "восточный" и "западный", применительно к сетям SDH, используются достаточно широко для указания на два прямо противоположных пути распространения сигнала в кольцевой топологии: один – по кольцу влево – "западный", другой – по кольцу вправо – "восточный". Если резервирование не используется (так называемый незащищенный режим), достаточно только одного выхода (одного канала приема/передачи). Резервирование 1+1 в сетях SDH является их внутренней особенностью и не имеет ничего общего с так называемым внешним резервированием, когда используется альтернативный (резервный) путь от одного узла сети к другому, как это делается в так называемой ячеистой сети SDH, работающей в незащищенном режиме.

Информация о работе Организация транспортной сети SDH в городе Темиртау на базе мультиплексоров Huawei