Цифровые 3D технологии

Автор работы: Пользователь скрыл имя, 28 Ноября 2012 в 12:35, реферат

Краткое описание

Во всем мире технологии, которые позволяют видеть 3D объемные изображения на плоском экране, называются стереоскопическими (stereoscopic) или 3D стереоскопическими технологиями. Однако в России больше принят термин 3D-технологии, который ведет к путанице, так как под 3D технологиями может подразумевается вся компьютерная графика.

Содержание

Введение
1. 3D стерео (стереоскопические) технологии
1.1 Анаглиф
1.2 Затворный метод
1.3 Поляризационные системы
1.4 Технология интерференционных фильтров
1.5 Эффект Пульфриха
1.6 Безочковые (автостереоскопические) методы
1.7 3D дисплеи
2. Стереоскопический кинематограф
2.1 Ранние патенты и исследования
2.2 Примеры систем стереоскопической съемки до 1952 года
2.3 Появление Polaroid
2.4 «Золотой век» (1952-1955)
2.5 Новая волна (1960-1979), одноплёночный формат
2.6 Вершина возрождения (1980-1984)
2.7 2003-2009 годы
2.8 Стереоскопические фильмы в России и СССР
Заключение
Библиографический список

Вложенные файлы: 1 файл

Цифровые 3D технологии.doc

— 287.50 Кб (Скачать файл)

Министерство образования и науки РФ

Федеральное государственное бюджетное

образовательное учреждение

высшего профессионального образования

«Рязанский государственный университет имени С.А. Есенина»

 

 

Реферат

 

 

Цифровые 3D технологии

 

 

 

 

Выполнил:

                              Студент 3 курса группы С

                                                                       Естественно-географического факультета,

                   отделения СКС и Т

Лалакин Сергей Юрьевич

 

 Проверил:

 Дергачева Юлия Юрьевна

 

 

 

 

 

 

Рязань 2011

 

 

Содержание

 

Введение

1. 3D стерео (стереоскопические)  технологии

1.1 Анаглиф

1.2 Затворный метод

1.3 Поляризационные системы

1.4 Технология интерференционных фильтров

1.5 Эффект Пульфриха

1.6 Безочковые (автостереоскопические) методы

1.7 3D дисплеи

2. Стереоскопический кинематограф

2.1 Ранние патенты и исследования

2.2 Примеры систем стереоскопической съемки до 1952 года

2.3 Появление Polaroid

2.4 «Золотой  век» (1952-1955)

2.5 Новая волна  (1960-1979), одноплёночный формат

2.6 Вершина возрождения  (1980-1984)

2.7 2003-2009 годы

2.8 Стереоскопические  фильмы в России и СССР

Заключение

Библиографический список

 

 

Введение

 

Получить представление  об объемности окружающего мира человеку позволяет ряд явлений: геометрическая и воздушная перспектива, тени и блики на поверхностях объектов, относительные размеры объектов. Изобразительные приемы, моделирующие эти явления, используются художниками с давних пор для передачи объемности трехмерных предметов, нарисованных на плоскости. Природа наделила человека бинокулярным зрением - парой глаз, расположенных на расстоянии 60-70 мм. За счет этого человек видит мир одновременно с двух точек наблюдения. В результате изображения, получаемые левым и правым глазом, слегка отличаются. Эти два изображения принято называть стереопарой. Анализируя различия между изображениями стереопары, мозг человека получает информацию об объеме и удаленности наблюдаемых объектов (рис. 1).

 

 

Рис. 1 Параллакс

 

Каждый глаз видит предмет по-своему; мозг оценивает разницу и формирует объемный образ. Кажущееся смещение рассматриваемого объекта, вызванное изменением точки наблюдения, называется параллаксом и является главным фактором в восприятии трехмерности мира.

 

1. 3D стерео (стереоскопические) технологии

 

Во всем мире технологии, которые позволяют видеть 3D объемные изображения на плоском экране, называются стереоскопическими (stereoscopic) или 3D стереоскопическими технологиями. Однако в России больше принят термин 3D технологии, который ведет к путанице, так как под 3D технологиями может подразумевается вся компьютерная графика.

Основным принципом  всех современных 3D стерео технологий является разнесение изображения отдельно для каждого глаза. В настоящее  время в мире развивается несколько 3D стерео технологий. Каждая 3D технология имеет свои недостатки и достоинства.

 

1.1 Анаглиф

 

Анаглифному методу показа 150 лет. Метод предложен Дальмейда и Дюко дю Ороном в 1858 году. Реализован в кино Луи Люмьером в 1935-м. Анаглифный метод (от греч. anagliphos - рельефный) состоит в окрашивании изображений стереопары в дополнительные цвета. Оба кадра стереопары формируют одно изображение. Разделение левого и правого кадра происходит с помощью цветных очков, окрашенных в соответствующие цвета. Традиционно в стереоскопических технологиях левое изображение преимущественно красного цвета, а правое – синего. Стерео очки (рис. 2) для наблюдения тоже имеют соответствующие светофильтры (красный и синий).

 

Рис.2 Сине-красные стерео очки

Анаглифный  метод используется и в кинопоказе, и в телевизионных трансляциях. Этот метод работает практически на любых цветных телевизорах и мониторах. Достоинство метода - простота и дешевизна реализации, недостаток - потеря части цветов и необходимость использования очков. Преимущества 3D технологии цветового разделения: низкая стоимость технологии, простота использования стереоскопии, не требуется специального монитора или проектора. Недостатки 3D анаглиф технологии цветового разделения: искажения в отображении цветов, плохое качество стереоскопии, быстрая утомляемость глаз. Стереотехнология анаглиф (цветового разделения) активно применяется в 3D фотографии. Заменяется более современными стереоскопическими технологиями.

Стереоскопическая технология - цветовое разделение внутри спектра цветов (Infitec)

В 3D технологии цветового разделения внутри спектра  цветов (Infitec) изображения для левого и правого глаза используют разные цвета (анаглифическое разделение). Но в данной 3D технологии разделение происходит не на красный и синий, а на отдельные  полоски внутри спектра этих цветов. Данная особенность стереоскопической технологии позволяет повысить качество стереоизображения, избежать искажения цветов. 3D очки (рис. 3), применяемые в данной стереотехнологии, тоже имеют соответствующие светофильтры, однако эти светофильтры очень сложны, так как должны разделять спектр цветов.

 

Рис.3 Стерео очки Infitec

Преимущества 3D технологии цветового разделения внутри спектра (Infitec): высокое качество стереоскопии, не требуется специальный 3D экран.

Недостатки  стереотехнологии цветового разделения внутри спектра: бывает небольшое искажение в отображении цветов, дороговизна 3D очков, данная стереоскопическая технология требует специализированного 3D обеспечения от производителя, данная 3D технология требует места для размещения 3D оборудования.

Основное применение технология Infitec нашла в 3D кинотеатрах.

 

1.2 Затворный метод

 

Другие названия — «эклипсный», «светоклапанный». Технология заключается в попеременной демонстрации на экране изображений, предназначенных для левого и правого глаза, и также поочерёдном затемнении стёкол очков, так что каждый глаз поочерёдно видит предназначенное только ему изображение. Смена «левого» и «правого» изображения на экране и затемнение соответствующих стёкол жёстко синхронизированы и осуществляются с очень высокой частотой, так что за счёт эффекта инерции зрения у человека создаётся иллюзия, что он видит цельное трёхмерное изображение. Метод предложил Д’Альмейда в 1858 году. В кинематографе этот метод впервые реализовал Э. Банкли в 1936 году.

В настоящее  время набирают популярность жидкокристаллические затворные очки, где вместо механических затворов используются ЖК-заслонки. Основными  производителями 3D очков для данной технологии (рис. 4) являются NVidia (очки 3D VISION), Xpand (очки Xpand), скоро появятся очки от других крупнейших компаний.

 

Рис.4 очки 3D VISION

 

3D технология  затворного разделения применяется  для домашних и бизнес решений,  для выставок и презентаций  и в других направлениях. Для  данной технологии требуется  специальные 3D мониторы или 3D проекторы, поддерживающие 120 Гц. Все больше новых мониторов и проекторов поддерживают 120 Гц (мониторы Samsung,ViewSonic, Acer и др.; проекторы BenQ, ViewSonic, Mitsubishi, Acer и др.).

Преимущества  стереоскопической технологии затворного разделения: высокое качество изображения 3D, простота установки и настройки, поддержка многих производителей, доступность, лучшее решение для дома, возможность интеграции сложных 3D систем.

Недостатки 3D технологии затворного разделения: специальные требования к 3D оборудованию (высокая частота 3D монитора/3D проектора - 120 Гц), дорогие 3D очки, неудобна для массовых мероприятий; увеличенное ослабление светового потока, что требует повышения яркости лампы проектора; эффект раздвоения изображения быстро движущихся объектов; повышенная утомляемость глаз; повышенный вес очков, создающий нагрузку на переносицу; очки с электроникой плохо поддаются санобработке.

 

1.3 Поляризационные системы

 

Поляризационному  методу стереопроекции около 120 лет. Предложен Ж. Андертоном в 1891 году. Получил широкое распространение после изобретения в 1935-м Е. Лэндом поляроидной пленки. При использовании линейной поляризации два изображения накладываются друг на друга на один и тот же экран через ортогональные (расположенные под углом 90 градусов друг к другу) поляризационные фильтры в проекторах. При этом необходимо использование специального посеребрённого экрана, который позволяет избежать деполяризации и компенсировать потерю яркости (поскольку на экран падает только 0,71 света излученного каждым проектором).

Зритель надевает очки (рис. 4), в которые также встроены ортогональные  поляризационные фильтры; таким образом, каждый фильтр пропускает только ту часть световых волн, чья поляризация соответствует поляризации фильтра, и блокирует ортогонально поляризованный свет. Линейно поляризованные очки требуют, чтобы зритель держал голову на одном уровне, не наклоняя её, иначе эффект теряется.

 

Рис.5 Стерео очки для 3D с поляризационной технологией

 

Пример технологии, использующей линейную поляризацию — IMAX 3D (IMAX - англ. Image Maximum - «максимальное изображение») — формат фильмов и кинотеатров, разработанный канадской компанией IMAX Corporation в начале 1970-х годов. Формат рассчитан на бо́льшие размеры экрана в сравнении с обычным кино и лучше оптимизирован для просмотра 3D-кино анаглифными системами. Стандартный размер экрана в кинотеатре IMAX — 22 м в ширину и 16 м в высоту. Экран занимает почти всё пространство перед зрителем, что обеспечивает максимальный «эффект присутствия».)

При использовании круговой поляризации два изображения  так же накладываются друг на друга  через фильтры с противоположно направленной поляризацией. В очки, предназначенные для зрителя, встроены «анализирующие» фильтры (с противоположно направленной поляризацией). В отличие от линейной поляризации, если зритель наклоняет голову, разделение левого и правого изображений сохраняется, а соответственно сохраняется и иллюзия стереоизображения.

Пример технологии с  круговой поляризацией - RealD Cinema (RealD Cinema - технология цифрового стереоскопического проецирования. Является наиболее часто используемой технологией для показа стереоскопических фильмов в кинотеатрах. В отличие от технологии IMAX 3D, RealD не требует двух проекторов. Компания Sony имеет эксклюзивное соглашение на использование технологии RealD для показа фильмов с помощью своих 3D-проекторов).

Благодаря последним  технологическим достижениям поляризационные  технологии стремительно набирают популярность. Поляризационный метод получил широкое распространение в кинопрокате благодаря четкому разделению стереопары, сохранению цветности; недостатки - необходимость использования дорогостоящего оборудования, специальных устройств визуализации и очки, которые зритель должен надевать.

 

1.4 Технология интерференционных фильтров

 

В проектор, перед лампой, устанавливают синхронизированный через контроллер специальный съёмный  вращающийся дисковый фильтр с сегментами формирующий через кадр изображение  для каждого глаза отдельно, которое  смешивается с помощью пассивных спектральных очков многоразового пользования, выдаваемых зрителям. Принцип работы диска достаточно прост - две половины круга являются фильтрами для изображений левого и правого глаза, при работе диск вращается с очень высокой скоростью, обеспечивая попеременное переключение фильтрующих элементов разных длин волн. На каждом кадре фильма диск проворачивается 3 раза, то есть, при стандартной частоте фильма 24 кадра в секунду, он вращается со скоростью 3x24x60=4320 оборотов в минуту

Технология, используемая для создания стереоэффекта, называется «визуализация через волновое умножение» или технология интерферентной фильтрации и лицензирована Dolby у немецкой компании Infitec GmbH (сокращение от Interferenzfiltertechnik). Dolby 3D (ранее известная как Dolby 3D Digital Cinema) — торговая марка Dolby Laboratories, Inc. для показа трёхмерного кино в цифровых кинотеатрах. Главное преимущество перед конкурирующими системами с пассивными поляризационными очками для зрителей в том, что данный метод позволяет сэкономить на стоимости экрана (не требуется посеребрённый или алюминированный экран), но стоимость самих фильтр-очков оказывается намного выше.

1.5 Эффект Пульфриха

 

Использование эффекта Пульфриха нельзя отнести к стереоскопическим методам, поскольку при этом не формируются разные картинки для правого и левого глаз. Эффект Пульфриха заключается в том, что при запаздывании нервного сигнала от одного глаза, движение объекта справа налево (или слева направо, но не вверх или вниз) кажется изменяющим глубину, к наблюдателю или от наблюдателя. Такое запаздывание может быть вызвано размещением нейтрального (серого) затемняющего фильтра перед одним глазом.

Поскольку эффект Пульфриха зависит от движения в  определенном направлении, его применимость сильно ограничена.

Преимуществом метода является возможность просмотра  «обычным» способом, без специальных  очков, при этом изображение не двоится, в отличие от стереоскопических  методов, а только пропадает иллюзия  глубины.

 

1.6 Безочковые (автостереоскопические) методы

 

Включают несколько технологий, не требующие от зрителя ношения специализированных очков для создания иллюзии стереоизображения. Используются в экспериментальных видеопанелях. В основном, представлены растровыми системами. (Кроме растрового, из безочковых методов известен также игольчатый, но сведений о его применении в кинематографе нет).

Информация о работе Цифровые 3D технологии