Видеоадаптеры семейства NVIDIA

Автор работы: Пользователь скрыл имя, 10 Июня 2013 в 19:09, реферат

Краткое описание

Кстати говоря, разработчики и программисты Nvidia трудятся не только над самими устройствами. Они также работают над развитием программной составляющей. Последним результатом этой работы стала специальная разработка под названием Nvidia PhysX. Что это? Данная программная доработка превращает изображение в играх в нечто невероятное. Этот продукт - система физики в игре. Благодаря таким решениям все элементы и объекты игры ведут себя в соответствии с реальными физическими законами, существующими в природе. Это последняя разработка от Nvidia дает результат, который во многом превосходит своих предшественников. Тем самым, разработчики игр могут добиваться непревзойденной реалистичности.

Содержание

1. Введение

2.

3 Заключение

Вложенные файлы: 1 файл

Видеоадаптер.doc

— 73.50 Кб (Скачать файл)

СОДЕРЖАНИЕ

 

1. Введение

 

2.

 

3 Заключение

 

4 Список источников  информации

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

 

Развитие современных  технологий заставляет нас каждый день удивляться новым разработкам и  техническим прорывам. Без сомнения, компания Nvidia - это один из лидеров среди производителей "видео-железа" для персонального компьютера. Сегодня мы поговорим именно об этой организации и о некоторых ее продуктах.

Nvidia - для чего нужна  продукция фирмы? Товары компании  необходимы для любого компьютера. Без видео-карты пользователь не получит никакого изображения на экране, и соответственно, не сможет адекватно взаимодействовать со своим ПК.

Кстати говоря, разработчики и программисты Nvidia трудятся не только над самими устройствами. Они также  работают над развитием программной составляющей. Последним результатом этой работы стала специальная разработка под названием Nvidia PhysX. Что это? Данная программная доработка превращает изображение в играх в нечто невероятное. Этот продукт - система физики в игре. Благодаря таким решениям все элементы и объекты игры ведут себя в соответствии с реальными физическими законами, существующими в природе. Это последняя разработка от Nvidia дает результат, который во многом превосходит своих предшественников. Тем самым, разработчики игр могут добиваться непревзойденной реалистичности.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ИСТОРИЯ РАЗВИТИЯ ВИДЕОКАРТЫ

 

Первая видеокарта для  компьютеров архитектуры IBM PC была представлена миру в 1981 году и получила название MDA (Monochrome Display Adapter). Это чудо инженерной мысли вообще не поддерживало графический режим и работало только с текстовыми данными. Видеоадаптер выводил на дисплей до 25 строк, каждая из которых вмещала 80 символов. При этом тексту можно было назначить один из пяти атрибутов: обычный, подчеркнутый, яркий, мигающий или инверсный. Задавать шрифт было нельзя, цвет букв также не поддавался изменению — эти параметры зависели исключительно от модели монитора. Монохромная палитра, текстовый режим... примитив? Только не для 1981 года.     Следующим этапом в развитии графических плат стало появление IBM CGA (Color Graphics Adapter). Видеоадаптер поддерживал четыре палитры по четыре цвета. Кроме того, он умел работать в графическом режиме, то есть на монитор отныне выводился не только текст, но и пиксельные картинки. При работе с графикой максимальное поддерживаемое разрешение составляло 320х200 точек, а для монохромной палитры это значение возрастало до 640х200. В графическом режиме использовалось не более 4 цветов одновременно. Следом за CGA последовала его усовершенствованная версия — EGA (Enhanced Graphics Adapter). Этот адаптер поддерживал 64-цветную палитру и мог обеспечить одновременно 16 цветов при разрешении 640x350.Примечательно, что видеокарты, совместимые с описанными выше стандартами, использовали для взаимодействия с монитором цифровой интерфейс. Последующие видеоадаптеры поддерживали более высокие разрешения и большее количество цветов. При этом из-за возросшего количества информации цифровая передача данных уступила место аналоговой. На смену EGA пришел адаптер VGA (Video Graphics Array), обеспечивающий 16 цветов при разрешении 640х480 или 256 цветов в режиме 320х200. Ну, а в 1987 году настала эпоха SVGA. Примечательно, что термином SVGA обозначались все режимы, превышающие VGA. У производителей попросту не было четкого стандарта, которому бы соответствовала их продукция. Путаница была устранена только через три года, когда организация VESA (Video Enhanced Standards Association) ввела документ, описывающий режимы SVGA. Он несколько раз дополнялся, а в конечной его версии, датированной 1995 годом, описаны основные режимы работы, вплоть до разрешения 1600х1200 пикселей и цветопередачи True Color (16,7 млн. цветов) 3dfx Voodoo 2 — 3D-ускоритель, ставший в свое время настоящей иконой для ценителей трехмерных игр. Важно осознавать то, что все ранние графические карты служили одной лишь цели — они преобразовывали информацию, получаемую от процессора, в доступный для монитора вид. Никаких расчетов эти видеокарты не производили. Цвет пикселей каждого кадра определял центральный процессор — по тем временам это было серьезным испытанием для ЦП. С появлением первых 3D-движков ситуация только ухудшилась — пресловутые игры стали отнимать огромное количество ресурсов. Разумеется, существовали серьезные видеоадаптеры, которые использовались в профессиональном ПО, вроде САПР. Но к компьютерам простых пользователей они имели очень отдаленное отношение. Все это привело к появлению графических ускорителей — видеокарт, способных обрабатывать некоторые графические функции на аппаратном уровне. К примеру, подобные устройства могли самостоятельно рассчитывать цвета отображаемых пикселей при рисовании линий или курсора, при перетаскивании окон и заливке отдельных участков изображения. Отныне видеокарта занималась не только преобразованием сигнала — она принимала непосредственное участие в процессе построения изображения. На рубеже 1994-95 годов разработчики стали активно задумываться о том, как ускорить игровые 3D-движки. В результате на сцену вышли так называемые 3D-ускорители. Эти устройства могли работать только в тандеме с видеоадаптером, уже установленным в ПК. При запуске трехмерных приложений 3D-ускорители обрабатывали объемные моделей, преобразуя их в двумерный вид. Результаты отправлялись видеокарте, которая при необходимости дополняла кадр различными объектами (например, интерфейсом) и передавала его на монитор. Со временем видеоадаптеры и 3D-ускорители слились воедино, и вот тогда-то видеокарты, наконец, обрели свой нынешний вид.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ЧТО ТАКОЕ ВИДЕОПАМЯТЬ

 

Видеопамять — часть оперативной памяти, отведённая для хранения данных, которые используются для формирования изображения на экране монитора.

При этом в видеопамяти  может содержаться как непосредственно  растровый образ изображения (экранный кадр), так и отдельные фрагменты как в растровой (текстуры), так и в векторной (многоугольники, в частности, треугольник) формах.

Существует выделенная оперативная память для видеокарт, также называемая «Видеопамятью».

Как правило, чипы оперативной памяти припаяны прямо к текстолиту (плате) [видеокарты], в отличие от съёмных модулей системной памяти, которые вставляются в стандартизированные разъёмы материнских плат. Одна половина чипов, обычно, припаяна под радиатором системы охлаждения видеокарты, а вторая — с обратной стороны. Чипы памяти представляют собой небольшие прямоугольные пластинки чёрного цвета.

Такая Оперативная Память используется только под нужды различных  графических приложений и игр. Технологии производства ОЗУ видеокарт развиваются более стремительно, чем ОЗУ для персональных компьютеров, в связи с тем, что игровая индустрия никогда не стоит на месте.

При изготовлении современных  графических карт уже достаточно давно используется память GDDR3. На смену  ей быстро пришла GDDR4, как промежуточные звено между GDDR3 и GDDR5. GDDR4, соответственно имеет более высокую пропускную способность, чем GDDR3 и уже сейчас активно используется в производстве видеокарт. Использование GDDR5 , так же, имеет место, но по причине своей дороговизны, этот тип памяти займёт массовую долю рынка примерно в 2010 году. Пока же, лидером в приятном соотношении «Цена-качество», по-прежнему остаётся GDDR3, которой вполне хватает под нужды современных игр. Так же, видеопамять отличается от «обычной» системной ОЗУ более жёсткими требованиями к ширине шины. Шина видеопамяти бывает: 32-битной, 64-битной, 128-битной, 192-битной (нестандартная шина памяти), 256-битной, 320-битной (нестандартная шина памяти), 384-битной (нестандартная шина памяти), 448-битной (нестандартная шина памяти) и 512-битной.

По современным меркам, для самых требовательных игр  уже давно не достаточно 128 bit шины-видеокарты, и по этому более-менее приемлемым показателем, является 256-bit. Но понятное дело, что чем больше ширина шины, тем лучше. Так же, имеет значение пропорциональность количества памяти её типу. 512 MB 128 bit DDR2 будет работать медленнее и гораздо менее эффективно, чем 256 MB 128 bit GDDR3 и т.п.

 

 

 

 

 

 

 

ВИДЕОАДАПТЕР. УСТРОЙСТВО И ТИПЫ ВИДЕОАДАПТЕРОВ

 

Устройство, которое называется видеоадаптером (или видеоплатой, видеокартой), есть в каждом компьютере. В виде устройства, интегрированного в системную плату, либо в качестве самостоятельного компонента – платы расширения. Главная функция, выполняемая видеокартой, это преобразование полученной от центрального процессора информации и команд в формат, который воспринимается электроникой монитора, для создания изображения на экране. Монитор обычно является неотъемлемой частью любой системы, с помощью которого пользователь получает визуальную информацию.

 

Графическая плата (известна также как графическая карта, видеокарта, видеоадаптер) (англ. videocard) — устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора.

Обычно видеокарта является платой расширения и вставляется в разъём расширения, универсальный (ISA, VLB, PCI, PCI-Express) или специализированный (AGP), но бывает и встроенной (интегрированной).

Современные видеокарты не ограничиваются простым выводом  изображения, они имеют встроенный графический микропроцессор, который может производить дополнительную обработку, разгружая от этих задач центральный процессор компьютера. Например, все современные видеокарты NVIDIA и AMD(ATi) поддерживают приложения OpenGL на аппаратном уровне.

 

Принцип работы видеоадаптера

 

Прежде, чем стать изображением на мониторе, двоичные цифровые данные обрабатываются центральным процессором, затем через шину данных направляются в видеоадаптер, где они обрабатываются и преобразуются в аналоговые данные и уже после этого направляются в монитор и формируют изображение. Сначала данные в цифровом виде из шины попадают в видеопроцессор, где они начинают обрабатываться. После этого обработанные цифровые данные направляются в видеопамять, где создается образ изображения, которое должно быть выведено на дисплее. Затем, все еще в цифровом формате, данные, образующие образ, передаются в RAMDAC, где они конвертируются в аналоговый вид, после чего передаются в монитор, на котором выводится требуемое изображение.

Таким образом, почти на всем пути следования цифровых данных над ними производятся различные операции преобразования, сжатия и хранения. Оптимизируя эти  операции, можно добиться повышения  производительности всей видеоподсистемы. Лишь последний отрезок пути, от RAMDAC до монитора, когда данные имеют аналоговый вид, нельзя оптимизировать.

Рассмотрим подробнее этапы  следования данных от центрального процессора системы до монитора.

1. Скорость обмен данными между  CPU и графическим процессором  напрямую зависит от частоты, на которой работает шина, через которую передаются данные. Рабочая частота шины зависит от чипсета материнской платы. Для видеоадаптеров оптимальными по скорости являются шина PCI и AGP. При существующих версиях чипсетов шина PCI может иметь рабочие частоты от 25Mhz до 66MHz, иногда до 83Mhz (обычно 33MHz) , а шина AGP работает на частотах 66MHz и 133MHz.

Чем выше рабочая частота шины, тем быстрее данные от центрального процессора системы дойдут до графического процессора видеоадаптера.

2. Ключевой момент, влияющий  на производительность видеоподсистемы,  вне зависимости от специфических  функций различных графических  процессоров, это передача цифровых  данных, обработанных графическим  процессором, в видеопамять, а  оттуда в RAMDAC. Самое узкое место любой видеокарты - это видеопамять, которая непрерывно обслуживает два главных устройства видеоадаптера, графический процессор и RAMDAC, которые вечно перегружены работой. В любой момент, когда на экране монитора происходят изменения (иногда они происходят в непрерывном режиме, например движение указателя мыши, мигание курсора в редакторе и т.д.), графический процессор обращается к видеопамяти. В то же время, RAMDAC должен непрерывно считывать данные из видеопамяти, чтобы изображение не пропадало с экрана монитора. Поэтому, чтобы увеличить производительность видеопамяти, производители применяют различные технические решения. Например, используют различные типы памяти, с улучшенными свойствами и продвинутыми возможностями, например VRAM, WRAM, MDRAM, SGRAM, или увеличивают ширину шины данных, по которой графический процессор или RAMDAC обмениваются информацией с видеопамять, используя 32 разрядную, 64 разрядную или 128 разрядную видеошину.

Чем более высокое  разрешение экрана используется и чем  больше глубина представления цвета, тем больше данных требуется передать из графического процессора в видеопамять и тем быстрее данные должны считываться RAMDAC для передачи аналогового сигнала в монитор. Нетрудно заметить, что для нормальной работы видеопамять должна быть постоянно доступна для графического процессора и RAMDAC, которые должны постоянно осуществлять чтение и запись.

В нормальных условиях доступ RAMDAC к видеопамяти на максимальной частоте возможен лишь после того, как графический процессор завершит обращение к памяти (операцию чтения или записи), т.е. RAMDAC вынужден дожидаться, когда наступит его очередь обратиться с запросом к видеопамяти для чтения и наоборот.

 

Устройство типовой  видеокарты

 

 Она состоит из  четырех основных устройств: памяти, контроллера, ЦАП и ПЗУ.

 Видеопамять служит  для хранения изображения. От  ее объема зависит максимально  возможное полное разрешение  видеокарты – A*B*C, где A - количество  точек по горизонтали, B - по вертикали,  и C - количество возможных цветов  каждой точки. Например, для разрешения 640x480x16 достаточно 256 Кб, для 800x600x256 - 512 Кб, для 1024x768x65536 (другое обозначение - 1024x768x64k) - 2 Мб, и т.д. Поскольку для хранения цветов отводится целое число разрядов, количество цветов всегда является степенью двойки (16 цветов - 4 разряда, 256 - 8 разрядов, 64k - 16, и т.д.).

 Видеоконтроллер отвечает  за вывод изображения из видеопамяти,  регенерацию ее содержимого, формирование  сигналов развертки для монитора  и обработку запросов центрального  процессора. Для исключения конфликтов при обращении к памяти со стороны видеоконтроллера и центрального процессора первый имеет отдельный буфер, который в свободное от обращений ЦП время заполняется данными из видеопамяти. Если конфликта избежать не удается - видеоконтроллеру приходится задерживать обращение ЦП к видеопамяти, что снижает производительность системы; для исключения подобных конфликтов в ряде карт применялась так называемая двухпортовая память, допускающая одновременные обращения со стороны двух устройств.

 Многие современные  видеоконтроллеры является потоковыми - их работа основана на создании  и смешивании воедино нескольких  потоков графической информации. Обычно это основное изображение,  на которое накладывается изображение  аппаратного курсора мыши и  отдельное изображение в прямоугольном окне. Видеоконтроллер с потоковой обработкой, а также с аппаратной поддержкой некоторых типовых функций называется акселератором или ускорителем, и служит для разгрузки ЦП от рутинных операций по формированию изображения.

        ЦАП (цифроаналоговый преобразователь, DAC) служит для преобразования результирующего потока данных, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на монитор. Все современные мониторы используют аналоговый видеосигнал, поэтому возможный диапазон цветности изображения определяется только параметрами ЦАП. Большинство ЦАП имеют разрядность 8x3 - три канала основных цветов (красный, синий, зеленый, RGB) по 256 уровней яркости на каждый цвет, что в сумме дает 16.7 млн. цветов. Обычно ЦАП совмещен на одном кристалле с видеоконтроллером.

 Видео-ПЗУ - постоянное  запоминающее устройство, в которое  записаны видео-BIOS, экранные шрифты, служебные таблицы и т.п. ПЗУ  не используется видеоконтроллером  напрямую - к нему обращается только центральный процессор, и в результате выполнения им программ из ПЗУ происходят обращения к видеоконтроллеру и видеопамяти. ПЗУ необходимо только для первоначального запуска адаптера и работы в режиме MS DOS; операционные системы с графическим интерфейсом - Windows или OS/2 - практически не используют ПЗУ для управления адаптером, хотя и могут иметь проблемы в работе при ошибках в программе BIOS, не найденных разработчиками.

 На карте обычно  размещаются один или несколько  разъемов для внутреннего соединения; один из них носит название Feature Connector и служит для предоставления внешним устройствам доступа к видеопамяти и изображению. К этому разъему может подключаться телеприемник, аппаратный декодер MPEG, устройство ввода изображения и т.п. На некоторых картах предусмотрены отдельные разъемы для подобных устройств.

Информация о работе Видеоадаптеры семейства NVIDIA