Электропривод безбашенных насосных установок

Автор работы: Пользователь скрыл имя, 29 Августа 2014 в 11:30, контрольная работа

Краткое описание

Водоснабжение в сельском хозяйстве имеет очень большое значение при производстве продукции животноводства, птицеводства и растениеводства. На животноводческих фермах ежедневно расходуется большое количество воды на поение животных, уход за ними, приготовление кормов, мойку доильной аппаратуры, посуды, на переработку продуктов животноводства и на другие цели.
Водоснабжение является трудоёмким процессом, электрификация и автоматизация которого облегчает труд человека и повышает его производительность.

Содержание

Введение ……………………………………………………………………………………..3
1. Общая характеристика безбашенной установки…………………………………...4
2. Анализ исходной схемы безбашенной установки…...…………..……….……...…5
3. Электропривод безбашенных насосных установок ……………………………..…6
4. Автоматизация одноагрегатных насосных установок …………………………..…7
Заключение …………………………………………………………………………………12
Список использованной литературы ………

Вложенные файлы: 1 файл

Контрольная работа по механизации Саша.doc

— 261.50 Кб (Скачать файл)

 Рис. 2. Датчики уровней трубчатый, станции управления «Каскад»  незамерзающих

             БИМСХ.

 

    В сельское хозяйство поступает значительное число насосов, не укомплектованных типовыми станциями управления с элементами автоматики. Поэтому прежде чем перейти к изучению типовой станции управления «Каскад», рассмотрим простейшие схемы автоматизации насосных установок с использованием датчиков уровней . Рассмотрим электрическую схему автоматизированной работы погружного насоса с использованием датчика уровней в баке напорной башни и датчика сухого хода в скважине насоса .

 


 

Рис. 3. Электрическая схема автоматизации погружного насоса по уровню водф в

            водонапорной башне. 

 

Когда вода заполнит промежуток пространства между электродом нижнего уровня и корпусом датчика, подключенным к нулевому заземленному проводу, контакты SL2 замкнутся, но реле KV1 не включится, так как его контакты KV1.2, включенные последовательно с контактами SL2, разомкнуты. Когда вода достигнет электрода верхнего уровня датчика, контакты SL1 замкнутся, реле KV1 включится и, разомкнув свои контакты KV1.1 в цепи катушки магнитного пускателя КМ, отключит последний, а, замкнув замыкающие контакты KV1.2, станет на самоподпитку через нижние контакты датчика SL2. Электродвигатель насоса отключится, погаснет сигнальная лампа HL2 и загорится HL1. Повторное включение электродвигателя насоса произойдетпри понижении уровня воды до положения, когда разомкнутся контакты SL2 и реле KV1 обесточится. Реле KV1 выбрано постоянного тока, так как обмотка реле переменного тока при разомкнутом магнитопроводе могла бы перегореть при медленном заполнении водой верхнего промежутка датчика уровней, показанного на электрической схеме контактами SL1. Это может произойти вследствие того, что ток в обмотке реле переменного тока в данном случае может нарастать медленно до значения тока  срабатывания, который в несколько раз больше его номинального тока, когда магнитопровод этого реле замкнут. Увеличение тока в цепи катушки реле KV1 с повышением уровня воды в верхнем промежутке датчика уровней вызвано уменьшением сопротивления слоя воды между верхним электродом и корпусом датчика уровней, так как увеличивается смачиваемая поверхность электрода и соответственно как бы увеличивается площадь сечения проводящего электрический ток слоя воды этого промежутка. Сопротивление R2 выбирают таким, чтобы при фазном напряжении сети 220 В на обмотке реле KV1 было напряжение 24 В постоянного тока. В случае аварийного снижения уровня воды в зоне погружного насоса ниже допустимого положения, когда вода выйдет из промежутка датчика сухого хода и ток между электродом датчика сухого хода и корпусом датчика (напорного трубопровода) прекратится. Что соответствует в электрической схеме размыканию контактов датчика сухого хода SL3, реле KV2 обесточится и разомкнет контакты KV2.1 в цепи катушки магнитного пускателя КМ, который отключит электродвигатель погружного насоса. Лампа HL4 погаснет, aHL5 загорится, сигнализируя об аварийном снижении уровня воды в скважине или колодце. Для защиты электродвигателя погружного насоса от перегрузок вместо тепловых реле может быть использовано устройство ФУЗ-М, которое более надежно защищает электродвигатель погружного насоса как от перегрузок, так и от неполно-фазных режимов работы. Выключателем SA2 можно включать сигнальную лампу HL3 для контроля уровня воды в напорном баке. Если лампа HL3 не горит, то либо насос не включается, либо он включен, но не подает воды, либо подача насоса меньше расхода потребителей в это время. Эксплуатация датчиков уровней, установленных в баках водонапорных башен, затруднительна особенно в зимний период, когда требуется их ремонт или настройка. По регулированию работы башенных насосных установок с изменением регулируемого напора (высоты между верхним и нижним уровнем воды в баке) в пределах от 0,5 до 1,5 м. В качестве датчиков давления часто используют электроконтактные манометры ЭКМ. Которые могут обеспечить заданный режим регулирования, подавая сигнал на включение насосного агрегата при убывании воды в напорном баке до нижнего установленного уровня НУ, соответствующего давлению включения p1, и подавая сигнал на отключение при подъеме воды до верхнего установленного уровня ВУ, соответствующего давлению отключения р2 . При наличии в скважине воды в зоне погружного насоса контакты датчика сухого хода SL будут замкнуты, а реле KV2 будет держать в замкнутом состоянии свои контакты KV2.1 в цепи катушки магнитного пускателя КМ. В автоматическом режиме при уменьшении давления, когда вода из бака расходуется потребителями при отключенном насосе, подвижный стрелочный контакт манометра SP будет перемещаться к неподвижному контакту 1, соответствующему давлению включения насоса, и при его касании магнитный пускатель КМ включит электродвигатель погружного насоса и своими замыкающими контактами КМ 2 станет на самоподпитку. При включении электронасосного агрегата в напорном трубопроводе возникает кратковременное повышение давления в момент трогания насоса. В этом случае, подвижный контакт манометра SP может коснуться контакта 2, реле KV1 может кратковременно разомкнуть свои контакты в цепи катушки пускателя КМ, но пускатель не отключится, так как питание его катушки будет осуществляться через контакты реле времени КТ. После разбега электронасосного агрегата и стабилизации давления реле времени разомкнет свои контакты КТ. При подъеме воды в напорном баке до установленного верхнего уровня ВУ, соответствующего давлению отключения р2, подвижный контакт манометра SP коснется контакта 2. Реле KV1, размыкая свои контакты KV1.1, отключит магнитный пускатель КМ и электродвигатель насоса. Вследствие разбора воды уровень ее в напорном баке будет снова снижаться, давление уменьшится, и контакт SP снова коснется контакта 1. Работа схемы повторится. Электроконтактный манометр желательно брать с малой ценой деления, так как возникнет трудность разделения контактов 1 и 2 ввиду их близкого расположения и возможного перекрытия подвижным контактом SP. Для погашения кратковременных повышений давления, действующих на электроконтактный манометр в момент включения погружного насоса, на ответвлении к манометру устанавливают 1...2 демпфирующие круглые пластинки с малыми отверстиями. Этой цели можно достигнуть при помощи вентиля, установленного на ответвлении к манометру, степень открытия, которого устанавливается такой, при которой не возникает броска давления в манометре при включении насоса.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение.

 

      Был изучен материал по устройству и принципу работы водокачки. Изучение достоинств и недостатков установки дало выбрать недостающее оборудование автоматизации. Исходя из этого, были проведены расчеты защитной аппаратуры и средств управления, разработаны принципиальная и монтажная схемы. Выбраны кабеля и провода для объекта.

 

         Данная разработка может быть практически задействована при монтаже схемы управления башенной водокачкой. Применятся дальше как модернизация прежней конструкции.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список использованной литературы.

 

1. Бородин И.Ф., Судник Ю.А. Автоматизация  технологических процессов. - М.: КолосС, 2005. - 344с.: ил.- (Учебники и учеб. пособия  для студентов высш. учеб. заведений).

2. Бородин И.Ф., Андреев С.А. Автоматизация  технологических процессов и  системы автоматического управления. - М.: КолосС, 2005. - 352 с.: ил. - (Учебники  и учебные пособия для средних  специальных учебных заведений).

3. Москаленко В.В. Справочник электромонтера: Справочник/ Владимир Валентинович Москаленко. - М.: Издательский центр «Академия», 2003. - 288 с.

4. Конаков А.П. Техника для малых  животноводческих ферм: Справочник. - М.: ПрофОбрИздат, 2001.- 208с.

 

 

 

 

 


Информация о работе Электропривод безбашенных насосных установок