Технология бурения скважин

Автор работы: Пользователь скрыл имя, 19 Сентября 2013 в 21:56, реферат

Краткое описание

Современное бурение охватывает широкий круг вопросов, всесторонне осветить которые по принципу последовательного рассмотрения каждого технологического процесса и операции, основ проектирования и принципов реализации их на производстве сложно. Поэтому остановимся на основных способах бурения.
Бурение скважин — это процесс сооружения направленной горной выработки большой длины и малого (по сравнению с длиной) диаметра. Начало скважины на поверхности земли называют устьем, дно — забоем. Этот процесс — бурение — распространен в различных отраслях народного хозяйства.

Вложенные файлы: 1 файл

пояснительная записка (Автосохраненный).doc

— 308.00 Кб (Скачать файл)

Однако при  турбинном бурении невозможно независимое регулирование параметров режима бурения, и при этом велики затраты энергии на 1 м проходки, расходы на амортизацию турбобуров и содержание цехов по их ремонту.

Турбинный способ бурения получил широкое распространение в России благодаря работам ВНИИБТ.

5.2.3 Бурение винтовыми (объемными) двигателями

Рабочие органы двигателей созданы на основе многозаходного винтового механизма, что позволяет  получить необходимую частоту вращения при повышенном по сравнению с турбобурами вращающем моменте.

Забойный двигатель состоит из двух секций — двигательной и шпиндельной.  Рабочими органами двигательной секции являются статор и ротор, представляющие собой винтовой механизм. В эту секцию входит также двухшарнирное соединение.  Статор при помощи переводника соединяется с колонной бурильных труб. Вращающий момент посредством двухшарнирного соединения передается с ротора на выходной вал шпинделя. Шпиндельная секция предназначена для передачи осевой нагрузки на забой, восприятия гидравлической нагрузки, действующей на ротор двигателя, и уплотнения нижней части вала, что способствует созданию перепада давления.

В винтовых двигателях вращающий момент зависит от перепада давления в двигателе. По мере нагружения вала развиваемый двигателем вращающий момент растет, увеличивается и перепад давления в двигателе. Рабочая характеристика винтового двигателя с требованиями эффективной отработки долот позволяет получить двигатель с частотой вращения выходного вала в пределах 80—120 об/мин с увеличенным вращающим моментом. Указанная особенность винтовых (объемных) двигателей делает их перспективными для внедрения в практику буровых работ.

5.2.4Бурение электробуром

При использовании  электробуров вращение долота осуществляется электрическим (трехфазным) двигателем переменного тока. Энергия к нему подается с поверхности по кабелю, расположенному внутри колонны бурильных труб. Буровой раствор циркулирует так же, как и при роторном способе бурения. Кабель внутрь колонны труб вводится через токоприемник, расположенный над вертлюгом. Электробур присоединяют к нижнему концу бурильной колонны, а долото крепят к валу электробура. Преимущество электрического двигателя перед гидравлическим состоит в том, что у электробура частота вращения, момент и другие параметры не зависят от количества подаваемой жидкости, ее физических свойств и глубины скважины, и в возможности контроля процесса работы двигателя с поверхности. К недостаткам относятся сложность подвода энергии к электродвигателю особенно при повышенном давлении и необходимость герметизации электродвигателя от бурового раствора.

 

 

 

 

 

 

 

 

 

 

 

 


                          Рисунок 2 – Буровая установка

1-долото; 2 - надолотная  утяжеленная бурильная труба; 3,8 - переводник; 4 - центратор; 5 - муфтовый  переводник; 6,7 - утяжеленные бурильные трубы;9 - предохранительное кольцо; 10 - бурильные трубы; 11 - предохранительный переводник; 12,23 - переводники штанговые, нижний и верхний; 13 - ведущая труба; 14 -редуктор; 15 - лебедка;16 - переводник вертлюга; 17 - крюк;18 -кронблок;19 - вышка;20 - талевый блок; 21 - вертлюг;22 - шланг;24 - стояк;25 - ротор;26 - шламоотделитель;27 - буровой насос

    1. Перспективные направления в развитии способов бурения в мировой практике.

В отечественной  и зарубежной практике ведутся научно-исследовательские и   опытно-конструкторские работы в области создания новых методов бурения, технологий, техники.

К ним относятся  углубление в горных породах с  использованием взрывов, разрушение пород при помощи ультразвука, эрозионное, с помощью лазера, вибрации и др.

Некоторые из названных методов получили развитие и применяются, хотя и в незначительном объеме, зачастую на стадии эксперимента.

Гидромеханический метод разрушения горных пород при углублении скважин все чаще используется в экспериментальных и полевых условиях. С.С. Шавловским проведена классификация водяных струй, которые могут применяться при бурении скважин. Основа классификации — развиваемое давление, рабочая длина струй и степень их воздействия на породы различного состава, сцементирован-ности и прочности в зависимости от диаметра насадки, начального давления струи и расхода воды. Применение водяных струй позволяет в сравнении с механическими способами повысить технико-экономические показатели проходки скважины.

Эрозионное бурение обеспечивает скорости углубления в 4—20 раз больше, чем при роторном бурении (в аналогичных условиях). Это объясняется, в первую очередь, значительным увеличением мощности, подводимой к забою по сравнению с другими методами.

Сущность его  состоит в том, что к долоту специальной конструкции вместе с буровым раствором подается абразивный материал — стальная дробь. Размер гранул — 0,42 — 0,48 мм, концентрация в растворе — 6 %. Через насадки долота с большой скоростью на забой подается этот раствор с дробью и забой разрушается. В бурильной колонне последовательно устанавливают два фильтра, предназначенные для отсева и удержания частиц, размер которых не позволяет им пройти через насадки долота.

Один фильтр — над долотом, второй — под  ведущей трубой, где можно осуществлять очистку. Химическая обработка бурового раствора с дробью сложнее, чем обработка обычного  раствора,  особенно  при  повышенных   температурах.

Особенность в  том, что необходимо удерживать дробь  в растворе во взвешенном состоянии и затем генерировать этот абразивный материал.

После предварительной  очистки бурового раствора от газа и шлама при помощи гидроциклонов  дробь отбирают и сохраняют в смоченном состоянии. Затем раствор пропускают через гидроциклоны тонкой очистки и дегазатор и восстанавливают его утраченные показатели химической обработкой. Часть бурового раствора смешивают с дробью и подают в скважину, на пути смешивая с обычным буровым раствором (в расчетном соотношении).

Лазеры — квантовые генераторы оптического диапазона — одно из замечательных достижений науки и техники. Они нашли широкое применение во многих областях науки и техники.

По зарубежным данным в настоящее время возможна организация производства газовых лазеров непрерывного действия с выходной мощностью 100 кВт и выше. Коэффициент полезного действия (КПД) газовых лазеров может достигать 20 — 60 %. Большая мощность лазеров при условии получения чрезвычайно высоких плотностей излучения достаточна для расплавления и испарения любых материалов, в том числе горных пород. Горная порода при этом также растрескивается и шелушится.

Экспериментально  установлена минимальная плотность  мощности лазерного излучения, достаточного для разрушения пород плавлением: для песчаников, алевролитов и  глин она составляет примерно 1,2—1,5 кВт/см2. Плотность мощности эффективного разрушения нефтенасыщенных горных пород из-за термических процессов горения нефти, особенно при поддуве в зону разрушения воздуха или кислорода, ниже и составляет 0,7 — 0,9 кВт/см2.

Подсчитано, что  для скважины глубиной 2000 м и диаметром 20 см нужно затратить около 30 млн кВт энергии лазерного излучения. Проводка скважин такой глубины пока не конкурентоспособна в сравнении с традиционными механическими методами бурения. Однако имеются теоретические предпосылки повышения КПД лазеров: при КПД, равном 60 %, энергетические и стоимостные затраты существенно снизятся и его конкурентоспособность повысится. При использовании лазера в случае бурения скважин глубиной 100 — 200 м стоимость работ относительно невелика. Но во всех случаях при лазерном бурении форма сечения может быть запрограммированной, а стенка скважины будет формироваться из расплава горной породы и будет представлять собой стеклообразную массу, позволяющую повысить коэффициент вытеснения бурового раствора цементным. В некоторых случаях можно, очевидно, обойтись без крепления скважин.

Зарубежные  фирмы предлагают несколько конструкций  лазеров. Основу их составляет мощный лазер, размещенный в герметичном  корпусе, способном выдержать высокое  давление. Температуроустойчивость пока не прорабатывалась. По этим конструкциям излучение лазера передается на забой через светопроводящее волокно. По мере разрушения (плавления) горной породы лазеробур подается вниз; он может быть снабжен установленным в корпусе вибратором. При вдавливании снаряда в расплав породы стенки скважины могут уплотняться.

В Японии начат  выпуск углекислотных газовых лазеров, которые при использовании в  бурении существенно (до 10 раз) повысят  скорость проходки.

Сечение скважины при формировании ствола этим методом может иметь произвольную форму. Компьютер по разработанной программе дистанционно задает режим сканирования лазерного луча, что позволяет запрограммировать размер и форму ствола скважины.

Проведение лазеротермических  работ возможно в дальнейшем в перфорационных работах. Лазерная перфорация обеспечит управляемость процесса разрушения обсадной колонны, цементного камня и породы, а также может способствовать проникновению каналов на значительную глубину, что, безусловно, повысит степень совершенства вскрытия пласта. Однако оплавление пород, целесообразное при углублении скважины, здесь неприемлемо, что должно быть учтено при использовании этого метода в дальнейшем.

В отечественных работах  есть предложения о создании лазероплазменных установок для термического бурения скважин. Однако транспортировка плазмы к забою скважины пока затруднена, хотя и ведутся исследования по возможности разработки световодов ("световодных труб").

Одним из наиболее интересных методов воздействия на горные породы, обладающих критерием "универсальность", является метод их плавления при помощи непосредственного контакта с тугоплавким наконечником — пенетратором. Значительные успехи в создании термопрочных материалов позволили перенести вопрос о плавлении горных пород в область реального проектирования. Уже при температуре примерно 1200—1300 °С метод плавления работоспособен в рыхлых грунтах, песках и песчаниках, базальтах и других породах кристаллического фундамента. В породах осадочного комплекса проходка глинистых и карбонатных пород требует, по-видимому, более высокой температуры.

Метод бурения плавлением позволяет получить на стенках скважины достаточно толстую ситалловую корку  с гладкими внутренними стенками. Метод обладает высоким коэффициентом ввода энергии в породу — до 80—90 %. При этом может быть, хотя бы принципиально, решена проблема удаления расплава с забоя. Выходя по выводящим каналам или просто обтекая гладкий пенетратор, расплав, застывая, образует шлам, размерами и формой которого можно управлять. Шлам выносится жидкостью, которая циркулирует выше бурового снаряда и охлаждает его верхнюю часть.

    1. Бурильная колонна. Основные элементы. Распределение нагрузки по длине бурильной колонны

6.1 Назначение бурильной колонны

Бурильная колонна является связующим звеном между буровым оборудованием, расположенном на дневной поверхности, и скважинным инструментом (буровое долото, испытатель пластов, ловильный инструмент и др.), используемым в рассматриваемый момент времени для выполнения какой-либо технологической операции в стволе скважины.

Функции, выполняемые бурильной  колонной, определяются проводимыми  в скважине работами. Главными из них  являются следующие.

В процессе механического  бурения бурильная колонна:

·  является каналом для подведения на забой энергии, необходимой для вращения долота: механической - при роторном бурении; гидравлической – при бурении с гидравлическими забойными двигателями (турбобур, винтовой забойный двигатель); электрической – при бурении электробурами (через расположенный внутри труб кабель);

·  воспринимает и передает на стенки скважины (при малой текущей глубине скважины также на ротор) реактивный крутящий момент при бурении с забойными двигателями;

·  является каналом для осуществления круговой циркуляции рабочего агента (жидкости, газожидкостной смеси, газа); обычно рабочий агент по внутритрубному пространству движется вниз к забою, захватывает разрушенную породу (шлам), а далее по затрубному пространству движется вверх к устью скважины (прямая промывка);

·  служит для создания (весом нижней части колонны) или передачи (при принудительной подаче инструмента) осевой нагрузки на долото, воспринимая одновременно динамические нагрузки от работающего долота, частично гася и отражая их обратно на долото и частично пропуская их выше;

·  может служить каналом связи для получения информации с забоя или передачи управляющего воздействия на скважинный инструмент.

·  При спускоподъемных операциях бурильная колонна служит для спуска и подъема долота, забойных двигателей, различных забойных компоновок;

·  для пропуска скважинных контрольно-измерительных приборов;

·  для проработки ствола скважины - осуществление промежуточных промывок с

целью удаления шламовых пробок и др.

При ликвидации осложнений и аварий, а также проведении исследований в скважине и испытании  пластов бурильная колонна служит:

·  для закачки и продувки в пласт тампонирующих материалов;

·  для спуска и установки пакеров с целью проведения гидродинамических исследований пластов путем отбора или нагнетания жидкости;

·  для спуска и установки перекрывателей с целью изоляции зон поглащений,

·  укрепления зон осыпаний или обвалов, установки цементных мостов и др.;

·  для спуска ловильного инструмента и работы с ним.

При бурении  с отбором керна (образца горной породы) со съемной колонковой трубой бурильная колонна служит каналом, по которому осуществляется спуск и  подъем колонковой трубы.

Информация о работе Технология бурения скважин