Историческая геология

Автор работы: Пользователь скрыл имя, 22 Февраля 2013 в 14:33, курсовая работа

Краткое описание

Историческая геология изучает закономерности развития земной коры во времени и пространстве с момента её образования до наших дней.
Историческая геология изучает:
возраст горных пород, то есть хронологическую последовательность их образования и положение в разрезе земной коры, остатки вымерших животных и растений и историю развития органического мира.
физико-географические условия земной поверхности — положение суши и моря, рельеф, климат, существовавшие в разное время геологической истории.
тектоническую обстановку и характер магматической деятельности минувших эпох, развитие земной коры, историю возникновения и развития дислокаций — поднятий, прогибов, складок, разрывных нарушений и других тектонических элементов.
закономерную приуроченность месторождений полезных ископаемых к определённым структурам, магматическим телам, своеобразным комплексам геологических образований

Содержание

Осадочность геологической исторической функции. Классификация осадочности функций.

Развитие Гондваны в палеозои и мезозои.

Развитие органического мира в раннем палеозои.

Вложенные файлы: 1 файл

историческая геология.doc

— 87.50 Кб (Скачать файл)

 

 

 

СОДЕРЖАНИЕ

 

  1. Осадочность геологической исторической функции. Классификация осадочности функций.

 

  1. Развитие Гондваны в палеозои и мезозои.

 

  1. Развитие органического мира в раннем палеозои.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Осадочность  геологической исторической функции Классификация осадочности функций

 

Историческая геология изучает закономерности развития земной коры во времени и пространстве с момента её образования до наших дней.

Историческая геология изучает:

  • возраст горных пород, то есть хронологическую последовательность их образования и положение в разрезе земной коры, остатки вымерших животных и растений и историю развития органического мира.
  • физико-географические условия земной поверхности — положение суши и моря, рельеф, климат, существовавшие в разное время геологической истории.
  • тектоническую обстановку и характер магматической деятельности минувших эпох, развитие земной коры, историю возникновения и развития дислокаций — поднятий, прогибов, складок, разрывных нарушений и других тектонических элементов.
  • закономерную приуроченность месторождений полезных ископаемых к определённым структурам, магматическим телам, своеобразным комплексам геологических образований

Историческая геология является одним из крупных разделов геологических наук, в котором в хронологическом порядке рассматривается геологическое прошлое Земли. Поскольку геологическим наблюдениям доступна пока земная кора, постольку рассмотрение разнообразных природных явлений и процессов распространяется на земную кору. Формирование Земной коры определяют многообразные факторы, из которых ведущими являются – время, физико-географические условия и тектоника. Поэтому для восстановления истории земной коры решаются следующие задачи:

  1. Определение возраста горных пород.
  2. Восстановление физико-географических условий земной поверхности прошлого.
  3. Восстановление тектонических движений и различных тектонических структур.

Определение строения и закономерностей развития земной коры:

  • Включает изучение состава, места и времени образования пластов горных пород и их корреляцию. Ее решает раздел исторической геологии – стратиграфия.
  • Рассматривает – климат, рельеф, развитие древних морей, рек, озер и так далее в прошлые геологические эпохи. Все эти вопросы рассматривает палеогеография.
  • Тектонические движения изменяют первичное залегание горных пород. Они происходят вследствие горизонтальных или вертикальных движений отдельных блоков земной коры. Определением времени, характера, величины тектонических движений занимается геотектоника. Тектонические движения сопровождаются проявлением магматической деятельности. Время и условия образования магматических пород восстанавливает петрология.

Все основные задачи тесно связаны между собой и решаются параллельно с помощью различных методов.

Как наука историческая геология начала формироваться на рубеже XVIII – XIX веков, когда У. Смит в Англии, а Ж. Кювье и А. Броньяр во Франции пришли к одинаковым выводам о последовательной смене слоев и находящихся в них остатков ископаемых организмов. На основе биостратиграфического метода были составлены первые стратиграфические колонки, разрезы, отражающие вертикальную последовательность осадочных пород. Открытие этого метода положило начало стратиграфическому этапу развития исторической геологии. В течение первой половины 19 века были установлены почти все основные подразделения стратиграфической шкалы, проведена систематизация геологического материала в хронологической последовательности, разработана стратиграфическая колонка для всей Европы. В этот период в геологии господствовала идея катастрофизма, которая связывала все изменения, происходящие на Земле (изменение залегания толщ, образование гор, вымирание одних видов организмов и появление новых и др.) с крупными катастрофами.

Идею катастроф сменяет учение об эволюции, которое все изменения на Земле рассматривает как результат очень медленных и длительных геологических процессов. Основоположниками учения являются Ж. Ламарк, Ч. Лайель, Ч. Дарвин.

К середине XIX века относятся первые попытки провести реконструкцию физико-географических условий по отдельным геологическим эпохам для крупных участков суши. Эти работы, проведенные учеными Дж. Дана, В.О. Ковалевским и другие, положили начало палеогеографическому этапу развития исторической геологии. Большую роль для становления палеогеографии имело введение понятия о фациях ученым А. Грессли в 1838 г. Сущность его заключается в том, что породы одного и того же возраста могут иметь разный состав, отражающий условия их образования.

Во второй половине XIX века зарождается представление о геосинклиналях как протяженных прогибах, заполненных мощными толщами осадочных пород. А к концу века А.П. Карпинским закладываются основы учения о платформах.

Представление о платформах и геосинклиналях как главнейших элементах структуры Земной коры дает начало третьему «тектоническому» этапу развития исторической геологии. Оно впервые было изложено в трудах ученого Э. Ога «Геосинклинали и континентальные площади». В России понятие о геосинклиналях было введено Ф.Ю. Левинсон-Лессингом в начале ХХ века.

Таким образом, мы видим, что до середины ХХ века историческая геология развивалась с преобладанием какого-то одного научного направления. На современном этапе историческая геология развивается по двум направлениям. Первое направление – это детальное изучение геологической истории Земли в области стратиграфии, палеогеографии и тектоники. При этом совершенствуются старые методы исследований и привлекаются новые, такие как: глубокое и сверхглубокое бурение, геофизические, палеомагнитные; космического зондирования, абсолютной геохронологии и так далее.

Второе направление – работы по созданию целостной картины геологической истории земной коры, выявлению закономерностей развития и установлению причинной зависимости между ними.

Изучением продолжительности и последовательности геологических событий занимается геохронология (от греч.ge+chronos+logos). Она в свою очередь подразделяется: на абсолютную и относительную.

Абсолютная геохронология устанавливает время возникновения горных пород и других геологических явлений в астрономических единицах (годах).

Методы определения абсолютного возраста:

  1. Метод ленточных глин – основан на явлении изменения состава осадков, которые отлагаются в спокойном водном бассейне при сезонном изменении климата. За 1 год образуется 2 слоя. В осенне-зимний сезон отлагается слой глинистых пород, а в весенне-летний образуется слой песчаных пород. Зная количество таких пар слоев, можно определить – сколько лет формировалась вся толща.
  2. Методы ядерной геохронологии. Эти методы опираются на явление радиоактивного распада элементов. Скорость этого распада постоянна и не зависит от каких-либо условий, происходящих на Земле. При радиоактивном распаде происходит изменение массы радиоактивных изотопов и накопление продуктов распада – радиогенных стабильных изотопов. Зная период полураспада радиоактивного изотопа, можно определить возраст минерала его содержащего. Для этого нужно определить соотношение между содержанием радиоактивного вещества и продукта его распада в минерале.

В ядерной геохронологии основными являются:

Свинцовый метод – используется процесс распада 235U, 238U, 232Th на изотопы 207Pb и 206Pb, 208Pb. Используются минералы: монацит, ортит, циркон и уранинит. Период полураспада ~ 4,5 млрд. лет.

Калий-аргоновый – при распаде К изотопы 40К (11%) переходят в аргон 40Ar, а остальные в изотоп 40Ca. Поскольку К присутствует в породообразующих минералах (полевые шпаты, слюды, пироксены и амфиболы), метод широко применяется. Период полураспада ~ 1.3млрд. лет.

Рубидий-стронциевый – используется изотоп рубидия 87Rb с образованием изотопа стронция 87Sr (используемые минералы - слюды содержащие рубидий). Из-за большого периода полураспада (49.9 млрд. лет) применяется для наиболее древних пород земной коры.

Радиоуглеродный – применяется в археологии, антропологии и наиболее молодых отложений Земной коры. Радиоактивный изотоп углерода 14С образуется при реакции космических частиц с азотом 14N и накапливается в растениях. После их гибели происходит распад углерода 14С, и по скорости распада определяют время гибели организмов и возраст вмещающих пород (период полураспада 5.7тыс. лет).

К недостаткам всех этих методов относятся:

  • невысокая точность определений (погрешность в 3-5% дает отклонение в 10-15 млн. лет, что не позволяет разрабатывать дробную стратификацию).
  • искажение результатов из-за метаморфизма, когда образуется новый минерал, аналогичный минералу материнской породы. Например, серицит-мусковит.

Тем не менее, за ядерными методами большое будущее, поскольку все время усовершенствуется аппаратура, позволяющая получать более надежные результаты. Благодаря этим методам установлено, что возраст Земной коры превышает 4.6 млрд. лет, тогда как до применения этих методов он оценивался лишь в десятки и сотни млн. лет.

Относительная геохронология определяет возраст пород и последовательность их образования стратиграфическими методами, а раздел геологии, изучающий взаимоотношения горных пород во времени и пространстве называется стратиграфией (от лат. stratum-слой +греч. grapho).

Методы относительной геохронологии подразделяются на:

  • биостратиграфические или палеонтологические,
  • не палеонтологические.

Палеонтологические методы (биостратиграфия). В основе метода-определения видового состава ископаемых остатков древних организмов и представления об эволюционном развитии органического мира, согласно которого в древних отложениях находятся остатки простых организмов, а в более молодых – организмы сложного строения. Эта особенность используется для определения возраста пород.

Для геологов важным моментом является то, что эволюционные изменения в организмах и появление новых видов происходит в определенный промежуток времени. Границы эволюционных преобразований – это границы геологического времени накопления осадочных слоев и горизонтов.

Ископаемые организмы подразделяются на 2 типа. К первому относятся такие, которые существовали длительное время без особых изменений и встречаются в нескольких пластах осадочной толщи. Второй тип – это организмы, которые обитали в узком отрезке времени и встречаются в отдельных пластах осадочных пород. Их называют руководящие ископаемые или руководящие формы. Руководящие формы должны: часто и в больших количествах встречаться в слое и легко распознаваться; иметь узкий возрастной (или вертикальный) интервал распространения, но широкое горизонтальное распространение, чтобы можно было сравнить отдаленные разрезы.

Метод определения относительного возраста слоев с помощью руководящих ископаемых так и называется метод руководящих ископаемых. Согласно этому методу одновозрастными являются слои, в которых содержатся близкие руководящие формы. Этот метод стал первым палеонтологическим методом определения возраста пород. На его основе была разработана стратиграфия многих регионов.

Чтобы избежать ошибок, наряду с этим методом используется метод палеонтологических комплексов. В этом случае используется весь комплекс вымерших организмов, встреченный в исследуемой толще. При этом могут быть выделены: ископаемые формы, жившие только в одном слое; формы, впервые появившиеся в изучаемом слое и переходящие в вышележащий (проводится нижняя граница слоя); формы, переходящие из нижнего слоя и закончившие свое существование в изучаемом слое (доживающие формы); формы, жившие в нижнем или верхнем слое, но не встреченные в изучаемом слое (верхняя и нижняя границы слоя).

Не палеонтологические методы. Основные из них подразделяются на:

  • литологические
  • структурно-тектонические
  • геофизические

Литологические методы разделения толщ опираются на различия отдельных слоев, составляющих изучаемую толщу по цвету, вещественному составу (минералого-петрографическому), текстурным особенностям. Среди слоев и пачек в разрезе находят такие, которые резко отличаются по этим свойствам. Такие слои и пачки легко определяются в соседних обнажениях и прослеживаются на большие расстояния. Их называют маркирующим горизонтом. Метод разделения осадочной толщи на отдельные пачки и слои называется метод маркирующих горизонтов. Для отдельных регионов или возрастных интервалов маркирующим горизонтом могут быть прослои известняка, кремнистых сланцев, конгломераты и т.п.

Информация о работе Историческая геология