Ядерно-магнитный томагрофический каротаж

Автор работы: Пользователь скрыл имя, 11 Мая 2013 в 14:18, реферат

Краткое описание

ЯМР быстро нашел применение в нефтепромысловой геологии – уже в начале 60 – х годов был разработан метод ядерно-магнитного каротажа (ЯМК) в поле Земли. Благодаря усилиям организаций Москвы (ВНИИЯГГ), Азербайджана ( Азинефтехим, ЮжВНИИгеофизика), Татарии ( Татнефтегеофизика), Западной Сибири (ЗапСибНИИгеофизика) была создана отечественная технология ЯМК в поле Земли [1,4], которая развивается и в настоящее время. Наиболее широко, в рамках обязательного комплекса ГИС, ЯМК применяется в "Татнефтегеофизике".

Вложенные файлы: 1 файл

Жирков К.К..doc

— 124.50 Кб (Скачать файл)

- высокая газонасыщенность  в зоне исследования (уменьшение  водородосодержания);

- наличие в поровом  пространстве битума, в котором релаксация протонов заканчивается до начала измерения и не вносит вклад в амплитуду сигнала. Например, если в порах присутствует битум и нефть, то по ЯМК будет фиксироваться только пористость, занятая нефтью;

- наличие «мертвого» времени аппаратуры, из–за которого возможна неполная регистрация сигналов от пор глин;

- малым временем намагничивания  флюида Tw, в результате чего возможна неполная регистрация сигналов от крупных пор и каверн.

Определение компонент полной пористости производится путем интегрирования дифференциальных спектров в определенных временных интервалах. Используется два варианта.

В первом случае («Разбиение на бины» – см. рис.5) шкала Т2 разбивается  на интервалы так, что каждый последующий интервал в два раза больше предыдущего (1-2, 2-4, 4–8, 8-16 мс и. т. д.). Такая разбивка является стандартной для ЯМК в искусственном поле, а пористости, соответствующие этим интервалам, получили название «бинов» (bin1, bin2 и. т. д.). Эта форма представления удобна для наглядного восприятия результатов каротажа ЯМТК, поскольку качественно отражает пористость, приходящуюся на поры разных размеров (чем правее интервал по шкале Т2, тем больше размеры пор, формирующих пористость этого интервала), а изменение картины бинов по глубине отражает вариацию структуры порового пространства пород в разрезе.

Во втором случае («Метод отсечек» - см. рис.5) определяются петрофизические  компоненты пористости (см. таблицу). Интегрирование производится во временных интервалах с петрофизически обоснованными границами, т.е. реализуется методика граничных значений времен Т2, соответствующих различным механизмам удержания воды в порах разных размеров.

Использование граничных  значений обусловлено как объективными ( разные породы имеют различные  распределения пор по размерам и релаксационную активность поверхности), так и субъективными причинами. Так, эффективная пористость определяется с использованием Кво, а величина последнего зависит от принятого давления вытеснения. Поэтому и положение границы «капиллярно–связанная – эффективная пористость» на оси Т2 будет зависеть от принятого давления вытеснения при определении Кво. Для стандартизации результатов в практике ЯМР используется величина давления 0,7 МПа (100 psi ), хотя можно оценить граничное значение Т2 при любом заданном давлении вытеснения.

Типовые граничные значения для выделения различных компонент  пористости, приведены в таблице. Они достаточно стабильны, но для конкретных отложений могут уточняться по исследованиям на керне.

 

Таблица

Типовые интервалы Т2 для определения компонент пористости

Компоненты пористости

(типовые мнемоники)

Т2 min (мс)

Т2 max (мс)

Пористость глин Кп глин (MCBW)

0

4

Пористость, занятая капиллярно-связанной  водой Кп кап – св. (MBVI)

4

Терригенный разрез – 33 Карбонатный разрез - 90

Пористость, занятая остаточной водой

Кп во при р = 0,7 Мпа

0

Терригенный разрез – 33 Карбонатный разрез - 90

Эффективная пористость Кп эф (MFFI)

при р = 0,7 Мпа

Терригенный разрез – 33 Карбонатный разрез – 90

Конечное для спектра

Каверновая емкость (в карбонатах) Кп кав.

750

Конечное для спектра

Поровая емкость (в карбонатах) Кп пор

0

750

Полная пористость по ЯМК Кп ЯМК (MPHS)

0

Конечное для спектра


 

Подобная методика определения  компонент пористости применима  для водонасыщенных пород. Присутствие углеводородов может вносить существенные погрешности, снижение которых возможно за счет использования специальных более сложных методик обработки результатов ЯМТК.

Проницаемость. Для оценки абсолютной проницаемости по данным ЯМТК используется два подхода.

Первый подход связан с применением широко используемых петрофизических связей типа Кво  – Кпр, Кпэф – Кпр (и их зарубежных аналогов – моделей Тимура, Тимура- Коатса и др.). Расчет Кпр проводится по данным Кпэф, Кво, непосредственно  определяемым по ЯМТК.

Во втором подходе используется непосредственно дифференциальный спектр ЯМТК, качественно отражающий структуру порового пространства. Расчет Кпр производится в рамках решеточной капиллярной модели пористой среды (см. рис.5) [6].

Флюидонасыщенность. Для качественных и количественных оценок насыщенности в зоне исследования ЯМТК используется информация двух и более измерений с различными параметрами последовательности CPMG. Технически задача сводится к совместному анализу нескольких спектров для каждой точки глубины. Методики количественных оценок находятся в стадии разработки и опробования и в настоящей статье не приводятся.

 

 

6. Выполнение каротажных  работ

 

Настройка и эталонировка прибора производится с использованием эталонировочного устройства, которое представляет собой бочку с коаксиальными секциями, имитирующими область скважины и область породы. Область породы заполняется водой с добавкой CuSO4 для уменьшения времени продольной и поперечной релаксации. Эта область имитирует 100%-ную пористость.

Настройка прибора происходит в два этапа. На первом с помощью  тестовых программ калибровки производится настройка частотной характеристики приемного тракта и частоты радиоимпульса. На втором этапе выбираются оптимальные  значения радиоимпульсов, т. е. их длительность и амплитуда радиочастотного поля в зоне исследования. Настройка производится сопоставлением настроечных характеристик прибора, полученных путем математического моделирования, и экспериментальных данных.

Подготовка скважины. Учитывая большой диаметр прибора (155 – 165 мм вместе с отклонителями), исследования выполняются в скважинах с номинальным диаметром 190 мм и более. ЯМТК обычно выполняется после обязательного комплекса ГИС и перед производством работ ЯМТК проводится промывка скважины. В сложных условиях (неустойчивый ствол, наклонные скважины и др.) сначала проводится контрольный спуск шаблона, который по своим размерам и весу аналогичен скважинному прибору ЯМТК.

Проведение измерений. Для контроля движения прибора при спуско – подъемных операциях в последней модификации аппаратуры используется встроенный канал ГК. Измерения выполняются от подошвы к кровле интервала каротажа.

Выбор режима измерений  определяется исходя из особенностей разреза. Как правило, основное измерение выполняется во всем интервале на одном режиме измерений, в перспективных интервалах могут выполняться дополнительные измерения с использованием других режимов.

Скорость каротажа обычно составляет 100 –150 м / час и обеспечивает шаг записи по глубине 20 см. При использовании специальных режимов измерений с увеличенными временами намагничивания или сложным набором импульсных последовательностей, а также при детализационных измерениях с шагом 10 см, скорость может уменьшаться до 50 м /час. При устойчивом стволе скважины возможно выполнение измерений на точках с остановкой на 1 – 3 минуты. В этом случае за счет накопления сигнала N измерений в раз увеличивается соотношение «сигнал / шум», что повышает достоверность обработки.

Контроль процесса измерений и обработка в реальном времени. Для последней модификации аппаратуры программное обеспечение регистрации реализовано в среде Windows.

Оперативный контроль работы прибора проводится по регистрируемым и выводимым на монитор текущим техническим параметрам : температура в различных участках скважинного прибора, напряжение радиоимпульсов, амплитудно – частотная характеристика и др.

В процессе каротажа производится экспресс-обработка релаксационной кривой с получением текущих значений полной и эффективной пористостей и распределения пористости по бинам. Помимо этих данных в процессе каротажа оператор наблюдает на экране дисплея поле зарегистрированных релаксационных кривых и текущую релаксационную кривую. При одновременном выполнении нескольких измерений (например, с различными временами раздвижки между импульсами TЕ,) реализовано совместное представление их результатов.

При наличии на буровой  спутникового канала связи возможна непосредственная трансляция процесса каротажа с результатами обработки в реальном времени Заказчику. Объем информации, получаемой непосредственно в процессе каротажа, достаточен для принятия оперативных решений по технологии дальнейших работ в скважине (выбор интервалов и точек для специальных исследований ЯМТК, отбор керна сверлящим керноотборником, проб флюидов приборами гидродинамического каротажа и испытателями в открытом стволе).

 

 

Литература

 

1. Аксельрод С. М., Неретин  В. Д., 1990. Ядерный магнитный резонанс  в нефтегазовой геологии и геофизике. М., Недра, 192с.

2. Акселърод С. М.,1998. Ядерно-магнитный каротаж в искусственном магнитном поле (по материалам американских геофизических журналов): Каротажник, № 49, с.46 - 63.

3. Акселърод С. М.,1999. Петрофизическое обоснование ЯМК  в поле постоянных магнитов. Методология и результаты лабораторных исследований ЯМР-свойств пород (по публикациям в американской геофизической печати): Каротажник, № 59, 28 - 47.

4. Методическое руководство  по проведению ядерно – магнитного  каротажа и интерпретации его данных. Под ред. В. Д. Неретина . М., ВНИИЯГГ, 1982, 96 с.

5. Митюшин Е. М., Барляев  В. Ю., Хаматдинов Р. Т., 2002, Способ каротажа с использованием ядерно-магнитного резонанса и устройство для его осуществления: Патент России №2181901

6. Мурцовкин В. А.,2002. Модель для расчета характеристик пористых сред. Коллоидный журнал, том 64, №3, с. 387 – 392.

7. Мурцовкин В. А., Топорков  В. Г., 2000, Новая ЯМР-технология  петрофизических исследований керна,  шлама и флюидов. Каротажник, № 69, с. 84 - 97.

 


Информация о работе Ядерно-магнитный томагрофический каротаж