Свойства зрительного анализатора

Автор работы: Пользователь скрыл имя, 05 Мая 2013 в 21:27, реферат

Краткое описание

Согласно И. П. Павлову, в нем, как и в любом анализаторе, имеются три основных отдела - рецепторный, проводниковый и корковый. В периферических рецепторах - сетчатке глаза - происходят восприятие света и первичный анализ зрительных ощущений. Проводниковый отдел включает зрительные пути и глазодвигательные нервы. В корковый отдел анализатора, расположенный в области шпорной борозды затылочной доли мозга, поступают импульсы как от фоторецепторов сетчатки, так и от проприорецепторов наружных мышц глазного яблока, а также мышц, заложенных в радужке и ресничном теле. Кроме того, имеются тесные ассоциативные связи с другими анализаторными системами.

Содержание

Введение............................................................................................
Оптическая система глаза...............................................................
Проводящий путь зрительного анализатора.................................
Механизмы, обеспечивающие ясное видение в
различных условиях.......................................................................
Цветовое зрение, зрительные контрасты и последовательные
образы...............................................................................................
Свойства зрения...............................................................................
Заключение......................................................................................
Библиографический список.............................................................

Вложенные файлы: 1 файл

Особенности свойств зрительного анализатора (2).doc

— 148.50 Кб (Скачать файл)

 

Оглавление

Введение............................................................................................

Оптическая система глаза...............................................................

Проводящий путь зрительного  анализатора.................................

Механизмы, обеспечивающие ясное видение в

различных условиях.......................................................................

Цветовое зрение, зрительные контрасты и последовательные

образы...............................................................................................

Свойства зрения...............................................................................

Заключение......................................................................................

Библиографический список.............................................................

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                        Введение

Зрительный анализатор является сложной нервно-рецепторной системой, предназначенной для восприятия и анализа световых раздражений.

 Согласно И. П. Павлову,  в нем, как и в любом анализаторе,  имеются три основных отдела - рецепторный, проводниковый и  корковый. В периферических рецепторах - сетчатке глаза - происходят  восприятие света и первичный  анализ зрительных ощущений. Проводниковый отдел включает зрительные пути и глазодвигательные нервы. В корковый отдел анализатора, расположенный в области шпорной борозды затылочной доли мозга, поступают импульсы как от фоторецепторов сетчатки, так и от проприорецепторов наружных мышц глазного яблока, а также мышц, заложенных в радужке и ресничном теле. Кроме того, имеются тесные ассоциативные связи с другими анализаторными системами.

 

 

 

 

 

 

 

 

 

 

Оптическая система глаза

Зрительное восприятие начинается с проекции изображения на сетчатку и возбуждения ее рецепторных клеток: палочковидных и колбочковидных нейроцитов — палочек и колбочек. Проекцию изображения на сетчатку обеспечивает оптическая система глаза, состоящая из светопреломляющего и аккомодационного аппаратов. 
  Светопреломляющий аппарат глаза объединяет роговицу, водянистую влагу, хрусталик, стекловидное тело. Это прозрачные структуры, преломляющие свет при переходе его из одной среды в другую (воздух — роговица — поверхность хрусталика). Наиболее сильное преломление света происходит в роговице. Аккомодационный аппарат образуют ресничное тело, радужка и хрусталик. Эти структуры направляют лучи света, исходящие от рассматриваемых объектов, на сетчатку в область ее желтого пятна (центральной ямки). У человека основным структурным механизмом аккомодации являются хрусталик и ресничное тело. Изменение кривизны хрусталика регулируется сложно устроенной мышцей ресничного тела.  
 При сокращении мышечных пучков ослабевает натяжение волокон ресничного пояска, прикрепляющихся к капсуле хрусталика. Не испытывая ограничивающего давления своей капсулы, хрусталик становится более выпуклым. Это повышает его преломляющую способность. При расслаблении ресничной мышцы волокна ресничного пояска натягиваются, хрусталик уплощается, преломляющая способность его уменьшается. Хрусталик с помощью ресничной мышцы постоянно изменяет свою кривизну, приспосабливает глаз для ясного видения предметов на разном их удалении от глаз. Такое свойство хрусталика получило название аккомодации. 
 Свет на пути к светочувствительной сетчатке проходит через ряд прозрачных светопреломляющих сред глаза. Зрачок, играющий роль диафрагмы, под действием ее мышц то суживается, то расширяется, пропуская внутрь глаза меньший или больший пучок света на самое чувствительное место сетчатки —желтое пятно.

Зрительный  акт является сложным нейрофизиологическим процессом, многие детали которого еще  не выяснены. Он состоит из четырех  основных этапов.

  1. С помощью оптических сред глаза (роговица, хрусталик) на фоторецепторах сетчатки образуется действительное, но инвертированное (перевернутое) изображение предметов внешнего мира.
  2. Под воздействием световой энергии в фоторецепторах (колбочки, палочки) происходит сложный фотохимический процесс, приводящий к распаду зрительных пигментов с последующей их регенерацией при участии витамина А и других веществ. Этот фотохимический процесс способствует трансформации световой энергии в нервные импульсы. Правда, до сих пор не ясно, каким образом зрительный пурпур участвует в возбуждении фоторецепторов. Светлые, темные и цветовые детали изображения предметов по-разному возбуждают фоторецепторы сетчатки и позволяют воспринимать свет, цвет, форму и пространственные отношения предметов внешнего мира.
  3. Импульсы, возникшие в фоторецепторах, проводятся по нервным волокнам к зрительным центрам коры большого мозга.
  4. В корковых центрах происходит превращение энергии нервного импульса в зрительное ощущение и восприятие. Однако до сих пор не известно, каким образом происходит это преобразование.

 

Основой всех зрительных функций является световая чувствительность глаза. Функциональная способность сетчатки неравноценна на всем ее протяжении. Наиболее высока она в области пятна и особенно в центральной ямке. Здесь сетчатка представлена только нейроэпителием и состоит исключительно из высоко-дифференцированных колбочек. При рассматривании любого предмета глаз устанавливается таким образом, что изображение предмета всегда проецируется на область центральной ямки. На остальной части сетчатки преобладают менее дифференцированные фоторецепторы - палочки, и чем дальше от центра проецируется изображение предмета, тем менее отчетливо оно воспринимается.

В связи с тем что  сетчатка животных, ведущих ночной образ жизни, состоит преимущественно  из палочек, а дневных животных - из колбочек, М. Шультце в 1868 г. высказал предположение о двойственной природе зрения, согласно которому дневное зрение осуществляется колбочками, а ночное - палочками. Палочковый аппарат обладает высокой светочувствительностью, но не способен передавать ощущение цветности; колбочки обеспечивают цветное зрение, но значительно менее чувствительны к слабому свету и функционируют только при хорошем освещении.

В зависимости от степени  освещенности можно выделить три  разновидности функциональной способности  глаза.

  1. Дневное (фотопическое) зрение осуществляется колбочковым аппаратом глаза при большой интенсивности освещения. Оно характеризуется высокой остротой зрения и хорошим восприятием цвета.
  2. Сумеречное (мезопическое) зрение осуществляется палочковым аппаратом глаза при слабой степени освещенности (0,1-0,3 лк). Оно характеризуется низкой остротой зрения и ахроматичным восприятием предметов. Отсутствие цветовосприятия при слабом освещении хорошо отражено в пословице "ночью все кошки серы".
  3. Ночное (скотопическое) зрение также осуществляется палочками при пороговой и надпороговой освещенности. Оно сводится только к ощущению света.

Таким образом, двойственная природа зрения требует  дифференцированного подхода к  оценке зрительных функций. Следует  различать центральное и периферическое зрение.

Центральное зрение осуществляется колбочковым аппаратом сетчатки. Оно характеризуется высокой  остротой зрения и восприятием цвета. Другой важной чертой центрального зрения является визуальное восприятие формы  предмета. В осуществлении форменного зрения решающая роль принадлежит корковому отделу зрительного анализатора. Так, человеческий глаз легко формирует ряды точек в виде треугольников, наклонных линий за счет именно корковых ассоциаций. Значение коры большого мозга в осуществлении форменного зрения подтверждают случаи потери способности распознавать форму предметов, наблюдаемые иногда при повреждении затылочных долей мозга. Периферическое палочковое зрение служит для ориентации в пространстве и обеспечивает ночное и сумеречное зрение.

 
 
 
              Проводящий путь зрительного анализатора 
 
 Световоспринимающим, чувствительным звеном зрительного анализатора (первым звеном) являются палочки и колбочки, расположенные в сетчатке. Проводящий путь от колбочек и палочек до коры полушарий большого мозга представляет собой второе звено зрительного анализатора. Центральным (третьим) звеном служит зрительная кора на медиальной поверхности затылочной доли полушарий большого мозга. 
 Обработка зрительной информации в зрительном анализаторе начинается непосредственно на сетчатке. Наружные сегменты палочек и колбочек имеют вид расположенных в виде столбиков мембранных дисков. Эти диски образованы складками плазматической мембраны и содержат молекулы светочувствительных пигментов: в палочках — родопсин, в колбочках — йодопсин. 
 Попавший в глаз свет проникает в самые глубокие слои сетчатки, где раздражает палочковидные и колбочковидные нейроциты (палочки и колбочки). Преобразование энергии света в нервные импульсы происходит в результате химических процессов в палочках и колбочках. Под действием света в наружных члениках светочувствительных клеток происходят химические реакции, при которых зрительные пигменты (родопсин у палочек, йодопсин — у колбочек) распадаются на более простые химические вещества. Эти вещества действуют на палочки и колбочки, вызывая в них возбуждение. После прекращения действия света происходит восстановление родопсина и йодопсина. Следовательно, химические реакции приводят к возникновению в светочувствительных клетках рецепторного потенциала, который генерирует нервный импульс. 
 Палочковидные нейроциты (палочки) не способны различать цвета, они используются преимущественно в сумеречном, ночном зрении для распознавания предметов по их форме и освещенности. Колбочковидные нейроциты (колбочки) выполняют свои функции в дневное время и необходимы для цветного зрения. В соответствии с особенностями строения и химического состава одни колбочки воспринимают синий цвет, другие — зеленый, третьи — красный, т.е. определенные виды колбочек воспринимают световые волны определенной длины. 
 Возникший в палочках и колбочках нервный импульс передается расположенным в толще сетчатки биполярным клеткам, а затем ганглиозным нейроцитам. Аксоны ганглиозных клеток, собираясь в области слепого пятна, формируют зрительный нерв, который направляется в полость черепа. На нижней поверхности мозга правый и левый зрительные нервы образуют частичный перекрест. В зрительном перекресте на другую сторону переходят не все нервные волокна зрительного нерва, а только те, которые идут от медиальной части сетчатки. 
 Таким образом, за зрительным перекрестом в составе зрительного тракта идут нервные волокна от латеральной («височной») части сетчатки «своего» глаза и медиальной («носовой») части сетчатки другого глаза. Далее нервные волокна идут к подкорковым зрительным центрам — латеральному коленчатому телу и верхним холмикам крыши среднего мозга. В этих центрах от волокон ганглиозных клеток сетчатки импульс передается следующим нейронам, чьи отростки направляются в корковый центр зрения — кору затылочной доли мозга, где происходит высший анализ зрительных восприятий. Частичный перекрест зрительных проводящих путей обеспечивает бинокулярность зрения. 
 
 

 

 

 

 

 

       Механизмы, обеспечивающие ясное видение в                          различных условиях 
 
 При рассмотрении объектов, находящихся на разном удалении от наблюдателя, ясному видению способствуют следующие процессы. 
 1. Конвергенционные и дивергенционные движения глаз, благодаря которым осуществляется сведение или разведение зрительных осей. Если оба глаза двигаются в одном направлении, такие движения называются содружественными. 
 2. Реакция зрачка, которая происходит синхронно с движением глаз. Так, при конвергенции зрительных осей, когда рассматриваются близко расположенные предметы, происходит сужение зрачка, т. е. конвергентная реакция зрачков. Эта реакция способствует уменьшению искажения изображения, вызываемого сферической аберрацией. Сферическая аберрация обусловлена тем, что преломляющие среды глаза имеют неодинаковое фокусное расстояние в разных участках. Центральная часть, через которую проходит оптическая ось, имеет большее фокусное расстояние, чем периферическая часть. Поэтому изображение на сетчатке получается нерезким. Чем меньше диаметр зрачка, тем меньше искажения, вызываемые сферической аберрацией. Конвергентные сужения зрачка включают в действие аппарат аккомодации, обусловливающий увеличение преломляющей силы хрусталика. Зрачок является также аппаратом устранения хроматической аберрации, которая обусловлена тем, что оптический аппарат глаза, как и простые линзы, преломляет свет с короткой волной сильнее, чем с длинной волной. Исходя из этого, для более точной фокусировки предмета красного цвета требуется большая степень аккомодации, чем для синего.

3. Аккомодация является главным механизмом, обеспечивающим ясное видение разноудаленных предметов, и сводится к фокусированию изображения от далеко или близко расположенных предметов на сетчатке. Основной механизм аккомодации заключается в непроизвольном изменении кривизны хрусталика глаза. 
 
Рис.1.  
Механизмы аккомодации: 
А—состояниепокоя; В—аккомодация.1—роговица; 2—радужная оболочка;  
3—хрусталик; 4—цинновысвязки; 5—.ресничная мышца расслаблена; 6 — ресничная мышца сокращена 
 Благодаря изменению кривизны хрусталика, особенно передней поверхности, его преломляющая сила может меняться в пределах 10-14 диоптрий. Хрусталик заключен в капсулу, которая по краям (вдоль экватора хрусталика) переходит в фиксирующую хрусталик связку (циннова связка), в свою очередь соединенную с волокнами ресничной (цилиарной) мышцы. При сокращении цилиарной мышцы натяжение цинновых связок уменьшается, а хрусталик вследствие своей эластичности становится более выпуклым. Преломляющая сила глаза увеличивается, и глаз настраивается на видение близко расположенных предметов. Когда человек смотрит вдаль, циннова связка находится в натянутом состоянии, что приводит к растягиванию сумки хрусталика и его утолщению. Иннервация цилиарной мышцы осуществляется симпатическими и парасимпатическими нервами. Импульсация, поступающая по парасимпатическим волокнам глазодвигательного нерва, вызывает сокращение мышцы. Симпатические волокна, отходящие от верхнего шейного узла, вызывают ее расслабление. Изменение степени сокращения и расслабления цилиарной мышцы связано с возбуждением сетчатки и находится под влиянием коры головного мозга. Преломляющая сила глаза выражается в диоптриях (Д). Одна диоптрия соответствует преломляющей силе линзы, главное фокусное расстояние которой в воздухе равно 1 м. Если главное фокусное расстояние линзы равно, например, 0,5 или 2 м, то ее преломляющая сила составляет, соответственно, 2Д или 0,5Д. Преломляющая сила глаза без явления аккомодации равна 58-60 Д и называется рефракцией глаза. 
 При нормальной рефракции глаза лучи от далеко расположенных предметов после прохождения через светопреломляющую систему глаза собираются в фокусе на сетчатке в центральной ямке. Нормальная рефракция глаза носит название эмметропии, а такой глаз называют эмметропическим. Наряду с нормальной рефракцией наблюдаются ее аномалии. 
 Миопия (близорукость) — это такой вид нарушения рефракции, при котором лучи от предмета после прохождения через светопреломляющий аппарат фокусируются не на сетчатке, а впереди нее. Гиперметропия (дальнозоркость) — вид нарушения рефракции, при котором лучи от далеко расположенных предметов в силу слабой преломляющей способности глаза или при малой длине глазного яблока фокусируются за сетчаткой. 

Астигматизм — вид нарушения рефракции, при котором лучи не могут сходиться в одной точке, в фокусе (от греч. stigme — точка), обусловлен различной кривизной роговицы и хрусталика в различных меридианах (плоскостях). Следует отметить, что к светопреломляющей системе глаза относятся также: роговица, влага преломляющая сила, в отличие от хрусталика, не регулируется и в передней камеры глаза, хрусталик и стекловидное тело. Однако их аккомодации участия не принимает. 
 
 
 
 
 
Рис.3.3. Схема хода лучей через  
 
преломляющие среды глаза 
 
А - дальнозоркий глаз;  
 
Б- нормальный глаз;  
 
В - близорукий глаз. 
 
 

 
 Бинокулярное  зрение (зрение двумя глазами) играет важную роль в восприятии разноудаленных предметов и определении расстояния до них, дает более выраженное ощущение глубины пространства по сравнению с монокулярным зрением, т.е. зрением одним глазом. При рассматривании предмета двумя глазами его изображение может попадать на симметричные (идентичные) точки сетчаток обоих глаз, возбуждения от которых объединяются в корковом конце анализатора в единое целое, давая при этом одно изображение.  

При движении объектов ясному видению способствуют следующие факторы:  
 1) произвольные движения глаз вверх, вниз, влево или вправо со скоростью движения объекта, что осуществляется благодаря содружественной деятельности глазодвигательных мышц;  
 2) при появлении объекта в новом участке поля зрения срабатывает фиксационный рефлекс — быстрое непроизвольное движение глаз, обеспечивающее совмещение изображения предмета на сетчатке с центральной ямкой. При слежении за движущимся объектом происходит медленное движение глаз —следящее движение. 
 При рассматривании неподвижного предмета для обеспечения ясного видения глаз совершает три типа мелких непроизвольных движений:  
 
►тремор — дрожание глаза с небольшой амплитудой и частотой, 
 
►дрейф — медленное смещение глаза на довольно значительное расстояние, 
 
►скачки (флики) — быстрые движения глаз.  
 
 Также существуют саккадические движения (саккады) — содружественные движения обоих глаз, совершаемые с большой скоростью. Наблюдаются саккады при чтении, просматривании картин, когда обследуемые точки зрительного пространства находятся на одном удалении от наблюдателя и других объектов. Если заблокировать эти движения глаз, то окружающий нас мир вследствие адаптации рецепторов сетчатки станет трудно различимым, каким он является у лягушки. Глаза лягушки неподвижны, поэтому она хорошо различает только движущиеся предметы, например бабочек. Именно поэтому лягушка приближается к змее, которая постоянно выбрасывает наружу свой язык. Находящуюся в состоянии неподвижности змею лягушка не различает, а ее движущийся язык принимает за летающую бабочку. 
               

Информация о работе Свойства зрительного анализатора