Энергетика будущего. Возможные проблемы

Автор работы: Пользователь скрыл имя, 23 Декабря 2012 в 14:25, реферат

Краткое описание

Логически мою работу можно разделить на три части.
В первой я постараюсь рассказать об устройстве, преимуществах и недостатках уже существующих электростанций. Во второй часть мы перейдем к обсуждению альтернативных источников энергии. И наконец мы рассмотрим проблемы современной энергетики такие, как транспорт энергии и т.д

Содержание

Введение.....................................................................................................3
Глава 1 Анализ существующих электростанций………………………………………………………….4-9
Теплоэнергетика....................................................................................4-5
Гидроэлектростанции…………………………………………………5-6
1.3 Атомная электростанция………………………………………………6-8
Глава 2 Альтернативные источники энергии и перспективы их развития…………9-14
2.1 Использование энергии ветра……………………………………………………………………9
2.2 Использование геотермальной энергии…………………………………………………………………10
2.3 Энергия морских волн…………………………………………………………………….11
2.4 Приливные электростанции…………………………………………...11-12
2.5 Солнечная энергия в энергетике……………………………………………………………..12-14
Глава 3 Проблемы современной энергетики…………………………………………………………….15-17
Заключение………………………………………………………………18
Литература……………………………………………………………….19

Вложенные файлы: 1 файл

Реферат Энергетика будущего. Возможные проблемы.doc

— 1,005.50 Кб (Скачать файл)

 

 

 

 

 

 

 

 

 

 

 

 

Рис.6  Схема устройства водо-водяного реактора и теплообменника - парогенератора

 

В данной главе мы рассмотрели основные принципы устройства уже существующих электростанций.  А теперь мы переходим  непосредственно к альтернативным источникам энергии.

 

 

 

 

 

Глава 2.

Альтернативные источники  энергии и перспективы их развития.

В данной главе мы рассмотрим способы добычи электроэнергии, которые еще не получили широкое распространение, но которые могут помочь улучшить нашу жизнь, так как было уже сказано энергетика играет важную роль в жизни современного человека.

И начнем с  способа, связанного с использования энергии ветра.

2.1 Использование энергии  ветра.

Прежде всего нужно  понять, что  такое ветер. Ветер- это движение воздушных масс относительно поверхности  земли за счет разности давления, которое  возникает из-за неравномерного прогревания поверхности Земли.

Данный  тип энергии уже используется очень давно, примером может служить ветреная мельница. Энергия ветра относится к число восполняемых источников, но стоит отметить, что большой трудностью является непостоянство скорости ветра и его направления, таким образом, энергию этого типа можно использовать для механизмов, не требующих постоянной энергии, или для передачи электроэнергии в достаточно мощную систему, для которой небольшие изменения количества поступающей энергии несущественны. Также можно заряжать аккумуляторы  с помощью данной энергии, или преобразовывать в механическую и использовать в качестве насоса, при чем без дополнительного сосуда. В настоящий момент существуют ветровые установки мощностью от 10 до 100 Квт.

Рис.7 Ветровая установка

 

Теперь давайте рассмотрим способ, связанный с энергией, которая  «лежит у нас под ногами», а  именно геотермальная энергия.

 

 

 

 

 

 

2.2 Использование геотермальной энергии.

 Геотермальная энергия –это  тепло, выделяющееся за счет  распада радиоактивных элементов  в глубинных слоях Земли   и движения тектонических плит.

 Прежде всего  выделяют  три слоя Земли: 

  1. Земная поверхность, то есть «твердая земля», толщина которой  под гидросферой(водной оболочкой Земли) всего7 километров, а под  атмосферой(воздушной оболочкой Земли) 130 километров.
  2. Мантия. Мантия занимает около 85% объема от всей планеты и около 2/3 от ее массы.
  3. Ядро. Его можно разделить на внешний слой и субъядро. Внешний слой представляет собой разогретые полужидкие пароды.

Рис.8 Строение Земли

«С увеличением глубины земных слоев температура повышается. На глубине 50 км она составляет около 700 - 800° С, на глубине 500 км - около 1500 - 2000° С, на глубине 1000 км -примерно 1700 - 2500° С, на глубине 2900 км (граница между мантией и ядром) - порядка 2000 - 4700°С, в центре Земли, т. е. на глубине 6371 км, - 2200 - 2500° С.»4 Это, как уже сказано объясняется тем, что продолжается распад радиоактивных элементов в глубинных слоях. Поэтому существует «поток тепла» к земной коре, тепло, накопленной в ядре огромно, поэтому геотермальную энергию относят к восполняемым источникам энергии.

Мощность геотермальной энергии  в 4000 раз меньше энергии солнечной радиации, но в 30 раз больше мощности всех электростанций мира.

Существуют два источника геотермальной  энергии: гидротермальные, то есть разогретые пар и вода, температура которых  около100° С, и петротермальные, то есть нагретые твердые породы.

Гидротермальная энергия уже нашла применение в современном мире, в геохимических  районах используется в отопительной системе и системе водоснабжения, но воду из гейзеров подавать в систему водоснабжения нельзя из-за высокой степени содержания минеральных веществ, поэтому ее только используют для нагревания.

Что касается получения  электрической  энергии на основе гидротермальной, то  принято считать, что пределом, ниже которого геотермальную электростанцию создавать нерентабельно, является температура пара или воды, близкая к 130° С. Возможно в будущем благодаря развитию технологий этот предел может быть снижен.  Однако стоит отметить, что в 1967 г. на Камчатке была создана Паужетская геотермальная электростанция мощностью 2,5 МВт.

В настоящее время вообще не используется второй тип геотермальной энергии-петротермальная, так как с ним связано много сложностей. Одна из них плохая способность сохранять тело подземных пород, и поэтому считаются невыгодными проектами.

Сейчас я думаю, мы можем поставить  точку в обсуждении геотеральной энергии и перейти к использованием морских волн.

 

 

2.3 Энергия морских волн.

Сейчас многие ученые считают, что  подобные установки можно использовать в открытом море как можно дальше от мест прибоя, но мощность таких установок  достаточно низкая.

Теперь давайте рассмотрим устройство таких станций.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

Рис.9 Схема установки для преобразования энергии морских волн

Платформа разделена на открытые снизу  секции, заполненные воздухом, играющие роль цилиндров поршневой воздушной  машины. Волны, проходя под платформой, сжимают поочередно находящийся  в секциях воздух. Таким образом, вода играет роль поршня. Следовательно, в секциях поочередно по мере прохождения под ними волн давление будет то больше, то меньше. Когда данная секция находится над гребнем волны, объем находящегося в ней воздуха уменьшается, воздух сжимается, давление его растет. Когда же секция находится между двумя гребнями волны, давление воздуха снижается. Сверху платформы установлены турбины, благодаря которым энергия волн преобразуется в электрическую энергию.

Наиболее важной проблемой становится влага. Таким образом, должно использоваться влагоустойчивое оборудование. Другая проблема связана с низкой мощностью данного механизма, однако они нашли применение. Например, в Японии используются данные установки питания электроэнергией плавающих буев.

Другой способ получения энергии, также связан с водой.

2.4 Приливные электростанции.

 Причиной морских приливов  отливов - воздействие на водную  оболочку Земли Луны и Солнца, а также центробежных сил.  Максимальное поднятие воды, именуемое полной водой, над минимальным опусканием уровня воды - малая вода, составляет в открытом океане около 1 м. Но в зависимости от очертания береговой линии, а также географической широты, глубины моря вблизи суши и некоторых других факторов величина прилива может быть гораздо больше.

«Сейчас считается, что для создания приливной электростанции разность уровней во время прилива и отлива должна быть не менее 10 м. Но таких мест не более 30 во всем мире».5Максимальная величина разности уровней моря во время прилива и отлива обнаружена в некоторых местах

«Атлантического побережья Канады, где она достигает 18 м.

отмечены высокие уровни прилива в некоторых места Ла-Манша (до 15 м),

Охотского моря (до 13 м), Белого моря (до 10 м), Баренцева моря (до 10 м).

Действие данной электростанции основано на свой свойствах сообщающихся сосудов, а  именно под действием  давления уровни жидкостей равны.

Сооружается плотина, образующая необходимый  бассейн. В теле плотины устанавливается гидротурбогенератор, который (в целях большей эффективности работы электростанции) должен быть «обратимым», т. е. действовать по своему прямому назначению при протекании через него воды в обе стороны: как справа налево, так и слева направо.

 

 

  Рис.10 Схема приливной электростанции

Однако показатели приливной электростанции невысоки. Однако технико-экономические показатели приливной электростанции невысокие. В этом можно убедиться, ознакомившись с работой приливной электростанции, построенной в 1966 г. во Франции на реке Роне, на берегу Ла-Манша, мощностью 240 тыс. кВт (В 1968 г. в Советском Союзе на побережье Баренцева моря близ г. Мурманска была построена Кислогубская приливная электростанция мощностью 800 кВт.). Стоимость ее строительства значительно выше, чем обычной гидроэлектростанции такой же мощности, а число часов работы в год на номинальной мощности по понятным причинам гораздо ниже.

И в завершение главы хочется  рассказать о наиболее перспективном  проекте, а именно использование  солнечной энергии.

 

2.5 Солнечная энергия  в энергетике.

Солнце - самый мощный источник  энергии ,  из доступных на сегодняшний  день. Полная мощность выражается 4x1014 кВт.  Но к сожалению большая часть энергии отражается атмосферой земли, и тогда на каждый  квадратный метр  суши  в среднем приходится 0,35 кВт, то на всю поверхность Земли приходится 105 млрд кВт.

Энергию солнца можно использовать для нагрева рабочего тела, например, воды в системе водоснабжения  или для преобразования в электрическую  энергию.  Остановимся подробнее на втором.

В настоящее время применяют  для этого два способа:

  1. с использованием полупроводниковых фотоэлектропреобразователей (ФЭП)
  2. создание паросиловых установок

Но стоит отметить, что первый способ более перспективен. Поэтому  мы начнем с него.

ФЕП представляет собой устройство, действие которого основано на явлении  фотоэффекта. «Явление вырывания электронов из вещества под действием света  называют фотоэффектом.»6 Сначала использовали тот, факт, что электроны катода выходят в ФЭП вакуум, но КПД этого процесса было мало.

 Затем стали использовать  ФЭП с запирающим слоем. Принцип  его работы заключается в том,  что есть два полупроводника, один из них с избытком электронов, а другой с «дыркой», то есть  электрон вышел, а его место  стало пустым.(рис. То в случае контакта между двумя пластинами, то свободные электроны начнут двигаться к проводнику с «дыркой»,  а «дырки» им навстречу. Но исходя из этого процесса нельзя получить электрический ток, так как при замыкании цепи они уравновесят друг друга, другое дело если на границу попадает свет, то образуется пары «элетрон-дырка», так образуется дополнительная разность потенциалов, следовательно, и электрический ток.    

 

                                                                           

   Рис.11 схема принципа работы солнечной батареи

В качестве полупроводника используют кремний и германий с примесями, так как эти вещества в чистом виде-диэлектрики. Но стоит отметить, что КПД ФЭП только около 25%, а стоимость таких установок пока еще высока, но ФЭП нашли применение – космические аппараты.

Остановимся теперь на втором способе  преобразования солнечной энергии-на создании паросиловых установок, в  которых обычный паровой котел, работающий, например, на угле, заменяется солнечным паровым котлом. На рис.12 представлена схема устройства такого вида электростанций.

Схема солнечной паровой установки  настолько ясна, что не требует  дополнительных пояснений.

 

 

Рис.12 схема паросиловой электростанции.

Ознакомившись с альтернативными источниками энергии, мы понимаем, что использование этих источников требует определенных знаний и технологий, чтобы они действительно могли приносить пользу, поэтому все зависит от нас

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 3

Проблемы современной  энергетики.

 

В данной главе мы рассмотрим вопросы, которые еще предстоит решить для того, чтобы развивать энергетику. К таким вопросам относится загрязнение  окружающей среды, проблемы связанные  с транспортировкой электроэнергии.

Сначала давайте рассмотрим проблему транспортировки электроэнергии, так как, найдя решение этой проблеме, мы, возможно, найдем путь уменьшить потери энергии при транспортировке. Дело в том, что большинство видов электростанций зависят от их географического положения, например, ТЭС должна находиться недалеко от мест добычи топлива, ГЭС должна находиться в полноводных реках. Отсутствие свободы в выборе места расположения электростанции и рост потребления электроэнергетики - делают транспорт энергии одним из важнейших вопросов современного развития энергетики.

Существуют два выхода из этой проблемы:

  1. транспортировка сырья, топлива (для ТЭС);
  2. транспорт самой электроэнергии;

В настоящее время для перекачки  нефти и нефтепродуктов используют трубопровод.

Нефть является несжимаемой жидкостью, поэтому расход энергии на ее перекачку определяется только необходимостью преодоления сил трения в трубопроводе, то есть является относительно малым. Также близко по экономичности перевозка нефти в больших танкерах. Труднее обстоит дело с транспортом природного газа. Он легко сжимается, поэтому приходиться использовать компрессор и трубопровод большого диаметра. Более экономичнее было бы транспортировать сжиженный газ, но есть одно но: чтобы поддерживать данное состояние необходима температура -150 °С.

Что касается транспорта угля на дальнее расстояние, то в настоящее время для этой цели используется только железнодорожный и водный транспорт. Подсчитано, что при перевозке груза по железной дороге при скорости 100 км/ч расход энергии в 4 раза меньше по сравнению с автомобильным транспортом и более чем в 60 раз меньше по сравнению с авиацией.

Информация о работе Энергетика будущего. Возможные проблемы