Биогеохимические круговороты

Автор работы: Пользователь скрыл имя, 16 Декабря 2013 в 20:18, реферат

Краткое описание

В отличие от энергии, которая однажды использованная организмом, превращается в тепло и теряется для экосистемы, вещества циркулируют в биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним элементов, встречающихся в природе, около 40 нужны живым организмам. Наиболее важные для них и требующиеся в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и расходуется организмами при дыхании. Азот извлекается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в неё другими бактериями.

Вложенные файлы: 1 файл

Биогеохимический круговорот.doc

— 102.50 Кб (Скачать файл)


1 Биогеохимические круговороты

В отличие от энергии, которая однажды использованная организмом, превращается в тепло  и теряется для экосистемы, вещества циркулируют в биосфере, что и  называется биогеохимическими круговоротами. Из 90 с лишним элементов, встречающихся в природе, около 40 нужны живым организмам. Наиболее важные для них и требующиеся в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и расходуется организмами при дыхании. Азот извлекается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в неё другими бактериями.

Круговороты элементов  и веществ осуществляются за счёт саморегулирующих процессов, в которых  участвуют все составные части  экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот.

Существует  закон глобального замыкания  биогеохимического круговорота в биосфере, действующий на всех этапах её развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота. Ещё большую роль на биогеохимический круговорот оказывает человек. Но его роль осуществляется в противоположном направлении. Человек нарушает сложившиеся круговороты веществ, и в этом проявляется его геологическая сила, разрушительная по отношению к биосфере на сегодняшний день. 


Когда 2 млрд. лет тому назад  на Земле появилась жизнь, атмосфера  состояла из вулканических газов. В  ней было много углекислого газа и мало кислорода (если вообще был), и первые организмы были анаэробными. Так как продукция в среднем превосходила дыхание, за геологическое время в атмосфере накапливался кислород и уменьшалось содержание углекислого газа. Сейчас содержание углекислого газа в атмосфере увеличивается в результате сжигания больших количеств горючих ископаемых и уменьшения поглотительной способности «зелёного пояса». Последнее является результатом уменьшения количества самих зелёных растений, а также связано с тем, что пыль и загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи.

В результате антропогенной деятельности степень замкнутости биогеохимических круговоротов уменьшается. Хотя она довольно высока (для различных элементов и веществ она не одинакова), но тем не менее не абсолютна, что и показывает пример возникновения кислородной атмосферы. Иначе невозможна была бы эволюция (наивысшая степень замкнутости биогеохимических круговоротов наблюдается в тропических экосистемах – наиболее древних и консервативных).

Таким образом, следует говорить не об изменении  человеком того, что не должно меняться, а скорее о влиянии человека на скорость и направление изменений и на расширение их границ, нарушающее правило меры преобразования природы. Последнее формулируется следующим образом: в ходе эксплуатации природных систем нельзя превышать некоторые пределы, позволяющие этим системам сохранять свойства самоподдержания. Нарушение меры как в сторону увеличения, так и в сторону уменьшения приводит к отрицательным результатам. Например, избыток вносимых удобрений столь же вреден, сколь и недостаток. Это чувство меры утеряно современным человеком, считающим, что в биосфере ему всё позволено.


Надежды на преодоление  экологических трудностей связывают, в частности, с разработкой и  введением в эксплуатацию замкнутых технологических циклов. Создаваемые человеком циклы превращения материалов считается желательным устраивать так, чтобы они были подобны естественным циклам круговорота веществ. Тогда одновременно решались бы проблемы обеспечения человечества невосполнимыми ресурсами и проблема охраны природной среды от загрязнения, поскольку ныне только 1 – 2% веса природных ресурсов утилизируется в конечном продукте.

Теоретически  замкнутые циклы превращения  вещества возможны. Однако полная и  окончательная перестройка индустрии  по принципу круговорота вещества в  природе не реальна. Хотя бы временное нарушение замкнутости технологического цикла практически неизбежно, например, при создании синтетического материала с новыми, неизвестными природе свойствами. Такое вещество вначале всесторонне апробируется на практике, и только потом могут быть разработаны способы его разложения с целью внедрения составных частей в природные круговороты.

 

 

2 Круговорот азота                      

Газообразный  азот возникает в результате реакции  окисления аммиака, образующегося при извержении вулканов и разложении биологических отходов:

4NH3 + 3O2 ® 2N2 + 6H2O.

Круговорот  азота – один из самых сложных, но одновременно самых идеальных круговоротов. Несмотря на то что азот составляет около 80% атмосферного воздуха, в большинстве случаев он не может быть непосредственно использован растениями, т.к. они не усваивают газообразный азот. Вмешательство живых существ в круговорот азота подчинено строгой иерархии: только определённые категории организмов могут оказывать влияние на отдельные фазы этого цикла.

Газообразный  азот непрерывно поступает в атмосферу  в результате работы некоторых бактерий, тогда как другие бактерии – фиксаторы (вместе с сине-зелёными водорослями) постоянно поглощают его, преобразуя в нитраты.

Неорганическим  путём нитраты образуются и в атмосфере в результате электрических разрядов во время гроз.


Самые активные потребители  азота – бактерии на корневой системе  растений семейства бобовых. Каждому виду этих растений присущи свои особые бактерии, которые превращают азот в нитраты. В процессе биологического цикла нитрат-ионы (NO3-) и ионы аммония (NH4+), поглощаемы растениями из почвенной влаги, преобразуются в белки, нуклеиновые кислоты и т.д. Далее образуются отходы в виде погибших организмов, являющихся объектами жизнедеятельности других бактерий и грибов, преобразующих их в аммиак. Так возникает новый цикл круговорота. Существуют организмы, способные превращать аммиак в нитриты, нитраты и в газообразный азот.

Биологическая активность организмов дополняется  промышленными способами получения азотосодержащих органических и неорганических веществ, многие из которых применяются в качестве удобрений для повышения продуктивности и роста растений.


Антропогенное влияние на круговорот азота определяется следующими процессами:

  1. сжигание топлива приводит к образованию оксида азота, а затем реакциям:
  2. 2NO + O2 ® 2NO2 ,
  3. 4NO2 + 2H2O.+ O2 ® 4HNO3 ,
  4. способствуя выпадению кислотных дождей;
  5. в результате воздействия некоторых бактерий на удобрения и отходы животноводства образуется закись азота – один из компонентов, создающих парниковый эффект;
  6. добыча полезных ископаемых, содержащих нитрат-ионы и ионы аммония, для производства минеральных удобрений;
  7. при сборе урожая из почвы выносятся нитрат-ионы и ионы аммония;
  8. стоки с полей, ферм и из канализаций увеличивают количество нитрат-ионов и ионов аммония в водных экосистемах, что ускоряет рост водорослей и других растений; при разложении последних расходуется кислород, что в конечном счёте приводит к гибели рыб.

 

 


В круговороте  соединений азота ключевое значение принадлежит микроорганизмам: азотфиксаторам, нитрификаторам и денитрификаторам. Другие же организмы оказывают влияние на круговорот азота лишь после того, как он войдет в состав их клеток. Как известно, бобовые и представители некоторых родов других сосудистых растений (например, ольха, араукария, лох) фиксируют азот с помощью бактерий-симбионтов. То же наблюдается и у некоторых лишайников, фиксирующих азот с помощью симбиотических сине-зеленых водорослей. Очевидно, что биологическая фиксация молекулярного азота свободноживущими и симбиотическими организмами происходит и в автотрофном, и в гетеротрофном звеньях экосистем.  
Из огромного запаса азота в атмосфере и осадочной оболочке литосферы в круговороте его участвует только фиксированный азот, усваиваемый живыми организмами суши и океана. В категорию обменного фонда этого элемента входят: азот годичной продукции биомассы, азот биологической фиксации бактериями и другими организмами, ювенильный (вулканогенный) азот, атмосферный (фиксированный при грозах) и техногенный  
Нетрудно заметить, что, за исключением растительности тундры, где содержание азота и зольных элементов примерно одинаково, в растительности почти всех других типов масса азота в 2... 3 раза меньше массы зольных элементов. Количество элементов, оборачивающихся в течение года (т.е. емкость биологического круговорота), наибольшее в тропических лесах, затем в черноземных степях и широколиственных лесах умеренного пояса (дубравах).

 

 


Азот — одно из самых распространенных веществ в биосфере, узкой оболочке Земли, где поддерживается жизнь. Так, почти 80% воздуха, которым мы дышим, состоит из этого элемента. Основная часть атмосферного азота находится в свободной форме, при которой два атома азота соединены вместе, образуя молекулу азота — N2. Из-за того, что связи между двумя атомами очень прочные, живые организмы не способны напрямую использовать молекулярный азот — его сначала необходимо перевести в «связанное» состояние. В процессе связывания молекулы азота расщепляются, давая возможность отдельным атомам азота участвовать в химических реакциях с другими атомами, например с кислородом, и таким образом мешая им вновь объединиться в молекулу азота. Связь между атомами азота и другими атомами достаточно слабая, что позволяет живым организмам усваивать атомы азота. Поэтому связывание азота — чрезвычайно важная часть жизненных процессов на нашей планете.

Круговорот азота представляет собой ряд замкнутых взаимосвязанных путей, по которым азот циркулирует в земной биосфере. Рассмотрим сначала процесс разложения органических веществ в почве. Различные микроорганизмы извлекают азот из разлагающихся материалов и переводят его в молекулы, необходимые им для обмена веществ. При этом оставшийся азот высвобождается в виде аммиака (NH3) или ионов аммония (NH4+). Затем другие микроорганизмы связывают этот азот, переводя его обычно в форму нитратов (NO3). Поступая в растения (и в конечном счете попадая в организмы живых существ), азот участвует в образовании биологических молекул. После гибели организма азот возвращается в почву, и цикл начинается снова. Во время этого цикла возможны как потери азота — когда он включается в состав отложений или высвобождается в процессе жизнедеятельности некоторых бактерий (так называемых денитрифицирующих бактерий), — так и компенсация этих потерь за счет извержения вулканов и других видов геологической активности.


Представим, что биосфера состоит из двух сообщающихся резервуаров  с азотом — огромного (в нем находится азот, содержащийся в атмосфере и океанах) и совсем маленького (в нем находится азот, содержащийся в живых существах). Между этими резервуарами есть узкий проход, в котором азот тем или иным способом связывается. В нормальных условиях азот из окружающей среды попадает через этот проход в биологические системы и возвращается в окружающую среду после гибели биологических систем.

Приведем несколько  цифр. В атмосфере азота содержится примерно 4 квадрильона (4·1015) тонн, а в океанах — около 20 триллионов (20·1012) тонн. Незначительная часть этого количества — около 100 миллионов тонн — ежегодно связывается и включается в состав живых организмов. Из этих 100 миллионов тонн связанного азота только 4 миллиона тонн содержится в тканях растений и животных — все остальное накапливается в разлагающих микроорганизмах и в конце концов возвращается в атмосферу.

Главный поставщик  связанного азота в природе — бактерии: благодаря им связывается приблизительно от 90 до 140 миллионов тонн азота (точных цифр, к сожалению, нет). Самые известные бактерии, связывающие азот, находятся в клубеньках бобовых растений. На их использовании основан традиционный метод повышения плодородия почвы: на поле сначала выращивают горох или другие бобовые культуры, потом их запахивают в землю, и накопленный в их клубеньках связанный азот переходит в почву. Затем поле засевают другими культурами, которые этот азот уже могут использовать для своего роста.


Некоторое количество азота  переводится в связанное состояние  во время грозы. Электрический разряд нагревает атмосферу вокруг себя, азот соединяется с кислородом (происходит реакция горения) с образованием различных оксидов азота. И хотя это довольно зрелищная форма связывания, она охватывает только 10 миллионов тонн азота в год.

Таким образом, в результате естественных природных процессов связывается от 100 до 150 миллионов тонн азота в год.

В ходе человеческой деятельности тоже происходит связывание азота и перенос его в биосферу (например, все то же засевание полей  бобовыми культурами приводит ежегодно к образованию 40 миллионов тонн связанного азота). Более того, при сгорании ископаемого топлива в электрогенераторах и в двигателях внутреннего сгорания происходит разогрев воздуха, как и в случае с разрядом молнии. Примерно 20 миллионов тонн азота в год связывается при сжигании природного топлива.

Но больше всего  связанного азота человек производит в виде минеральных удобрений. Как  это часто бывает с достижениями технического прогресса, технологией  связывания азота в промышленных масштабах мы обязаны военным. В Германии перед Первой мировой войной был разработан способ получения аммиака (одна из форм связанного азота) для нужд военной промышленности. Недостаток азота часто сдерживает рост растений, и фермеры для повышения урожайности покупают искусственно связанный азот в виде минеральных удобрений. Сейчас для сельского хозяйства каждый год производится чуть больше 80 миллионов тонн связанного азота (заметим, что он употребляется не только для выращивания пищевых культур — пригородные лужайки и сады удобряют им же).


Суммировав весь вклад  человека в круговорот азота, получаем цифру порядка 140 миллионов тонн в год. Примерно столько же азота связывается в природе естественным образом. Таким образом, за сравнительно короткий период времени человек стал оказывать существенное влияние на круговорот азота в природе. Каковы будут последствия? Каждая экосистема способна усвоить определенное количество азота, и в последствия этого в целом благоприятны — растения станут расти быстрее. Однако при насыщении экосистемы азот начнет вымываться в реки. Эвтрофикация (загрязнение водоемов водорослями) озер — пожалуй, самая неприятная экологическая проблема, связанная с азотом. Азот удобряет озерные водоросли, и они разрастаются, вытесняя все другие формы жизни в этом озере, поскольку, когда водоросли погибают, на их разложение расходуется почти весь растворенный в воде кислород.

Информация о работе Биогеохимические круговороты