Цикл Ренкина.Тепловое излучение

Автор работы: Пользователь скрыл имя, 22 Апреля 2014 в 13:44, контрольная работа

Краткое описание

Теоретическим циклом современной паросиловой установки является цикл Ренкина.
Пароводяная смесь образовавшаяся в результате передачи тепловой энергии воде в активной зоне поступает в Барабан – сепаратор где происходит разделение пара и воды. Пар направляется в паровую турбину, где расширяясь адиабатно, совершает работу. Из турбины отработавший пар направляется в конденсатор. Там происходит отдача теплоты охлаждающей воде, проходящей через конденсатор. Вследствие этого пар полностью конденсируется. Полученный конденсат непрерывно засасывается насосом из конденсатора, сжимается и направляется вновь в барабан сепаратор.

Вложенные файлы: 1 файл

РЕФЕРАТ ТЕРМОДЕНАМИКА редакт.docx

— 365.43 Кб (Скачать файл)

 

 

Оглавление

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Цикл Ренкина

 

Теоретическим циклом современной паросиловой установки является цикл Ренкина.

Пароводяная смесь образовавшаяся в результате передачи тепловой энергии воде в активной зоне поступает в Барабан – сепаратор где происходит разделение пара и воды. Пар направляется в паровую турбину, где расширяясь адиабатно, совершает работу. Из турбины отработавший пар направляется в конденсатор. Там происходит отдача теплоты охлаждающей воде, проходящей через конденсатор. Вследствие этого пар полностью конденсируется. Полученный конденсат непрерывно засасывается насосом из конденсатора, сжимается и направляется вновь в барабан сепаратор. . Наша компания имеет огромный опыт по передаче в лизинг оборудования для производства.

Конденсатор играет двоякую роль в установке: Во-первых, он имеет паровое и водяное пространство, разделенные поверхностью, через которую происходит теплообмен между отработавшим паром и охлаждающей водой. Поэтому конденсат пара может быть использован в качестве идеальной воды, не содержащей растворенных солей. Во-вторых, в конденсаторе вследствие резкого уменьшения удельного объема пара при его превращении в капельножидкое состояние наступает вакуум, который будучи поддерживаемым в течение всего времени работы установки, позволяет пару расширяться в турбине еще на одну атмосферу (Рк около 0,04 - 0,06 бар) и совершать за счет этого дополнительную работу.

Цикл Ренкина в T-S диаграмме.

Синяя линия в Т-S диаграмме воды является разделительной, при энтропии и температуре соответствующим точкам лежащим на диаграмме выше этой линии существует только пар, ниже паро–водяная смесь.

Влажный пар в конденсаторе полностью конденсируется по изобаре p2=const (линия 2 - 3). Затем вода сжимается насосом от давления P2 до давления P1, этот адиабатный процесс изображен в T-S-диаграмме вертикальным отрезком 3-5.

Длина отрезка 3-5 в T-S-диаграмме весьма мала, так как в области жидкости, изобары (линии постоянного давления) в T-S-диаграмме проходят очень близко друг от друга. Благодаря этому при изоэптропном (при постоянной энтропии) сжатии воды, температура воды возрастает менее чем на 2 - 3 °С, и можно с хорошей степенью приближения считать, что в области жидкости изобары воды практически совпадают с левой пограничной кривой (синяя линия); поэтому зачастую при изображении цикла Ренкина в Т-S-диаграмме изобары в области жидкости изображают сливающимися с левой пограничной кривой. Малая величина отрезка адиабаты 3-5 свидетельствует о малой работе, затрачиваемой насосом на сжатие воды. Малая величина работы сжатия по сравнению с величиной работы, производимой водяным паром в процессе расширения 1-2, является важным преимуществом цикла Ренкина.

Из насоса вода под давлением P2 поступает в барабан сепаратор, а затем в реактор, где к ней в изобарно (процессе 5-4 P1=const) подводится тепло. Вначале вода в реакторе нагревается до кипения (участок 5-4 изобары P1=const) а затем, по достижении температуры кипения, происходит процесс парообразования (участок 4-1 изобары P1=const). Пароводяная смесь поступает в барабан сепаратор где происходит разделение воды и пара. Насыщенный пар, из барабана сепаратора поступает в турбину. Процесс расширения в турбине изображается адиабатой 1-2 (Этот процесс относится к классическому циклу Ренкина в реальной установке процесс расширения пара в турбине несколько отличается от классического). Отработанный влажный пар поступает в конденсатор, и цикл замыкается.

С точки зрения термического к. п. д. цикл Ренкина представляете менее выгодным, чем цикл Карно, изображенный выше (рисунок 5) поскольку степень заполнения цикла (равно как и средняя температур подвода тепла) для цикла Ренкина оказывается меньше, чем в случае цикла Карно. Однако с учетом реальных условий осуществления экономичность цикла Ренкина выше экономичности соответствующего цикла Карно во влажном паре.

Цикл с промежуточным перегревом пара.

Для того чтобы увеличить термический к. п. д. цикла Ренкина, часто применяют так называемый перегрев пара в специальном элемент установки - пароперегревателе, где пар нагревается до температуры, превышающей температуру насыщения при данном давлении P1. В этом случае средняя температура подвода тепла увеличивается по сравнению с температурой подвода тепла в цикле без перегрева и, следовательно, термический к. п. д. цикла возрастает. Цикл Ренкина с перегревом пара является основным циклом теплосиловых установок, применяемых в современной теплоэнергетике.

Поскольку в настоящее время не существует промышленных энергетических установок с ядерным перегревом пара (перегрев пара в непосредственно в активной зоне ядерного реактора), то для ядерных реакторов BWR и РБМК используется цикл с промежуточным перегревом пара.

 

 

Цикл с промежуточным перегревом пара в T-S диаграмме.

Для повышения КПД в цикле с промежуточным перегревом пара, используется двух ступенчатая турбина, состоящая из цилиндра высокого давления и нескольких (4 для РБМК) цилиндров низкого давления. Пар из барабана сепаратора направляется в цилиндр высокого давления (ЦВД), часть пара отбирается для перегрева. Расширяясь в цилиндре высокого давления процесс на диаграмме 1-6, пар совершает работу. После ЦВД пар направляется в пароперегреватель, где за счет охлаждения отобранной в начале части пара, осушается и нагревается до более высокой температуры, (но уже при более низком давлении, процесс 6-7 на диаграмме) и поступает в цилиндры низкого давления турбины (ЦНД). В ЦНД пар расширяясь, снова совершает работу (процесс 7-2 на диаграмме) и поступает в конденсатор. Остальные процессы соответствуют процессам в выше рассмотренном цикле Ренкина.

Регенеративный цикл

Малое значение КПД цикла Ренкина по сравнению с циклом Карно связано с тем, что большое количество тепловой энергии при конденсации пара передается охлаждающей воде в конденсаторе. Для снижения потерь часть пара из турбины отбирается и направляется на регенерационные подогреватели, где тепловая энергия, высвобождаемая при конденсации отобранного пара, используется для подогрева воды, полученной после конденсации основного парового потока.

В реальных паросиловых циклах регенерация осуществляется с помощью регенеративных, поверхностных или смешивающих, теплообменников, в каждый из которых поступает пар из промежуточных ступеней турбины (так называемый регенеративный отбор). Пар конденсируется в регенеративных теплообменниках, нагревая питательную воду, поступающую в реактор. Конденсат греющего пара смешивается с основным потоком питательной воды.   . Схема установки с регенеративным циклом: Т - турбина, К – конденсатор, Н – насос, Р – некий нагревающий реактор, PП1, РП2 – регенеративные подогреватели. Стрелками показаны отборы пара из турбины. 

Цикл паросиловой установки с регенерацией, строго говоря, нельзя изобразить в плоской Т-S-диаграмме, поскольку эта диаграмма строится для постоянного количества рабочего тела, тогда как в цикле установки с регенеративными подогревателями количество рабочего тела оказывается различным по длине проточной части турбины.

Поэтому, в дальнейшем, рассматривая изображение цикла этой установки в плоской Т-S-диаграмме, следует иметь в виду условность этого изображения; для того чтобы подчеркнуть это, рядом с Т-S-диаграммой (рисунок 9) помещена диаграмма, показывающая расход (D) пара через турбину вдоль ее проточной части. Эта диаграмма относится к линии 1-2 в T-S-диаграмме — линии адиабатного расширения пара в турбине. Таким образом, на участке 1-2 цикла в T-S-диаграмме количество рабочего тела убывает с уменьшением давления, а на участке 5 - 4 количество рабочего тела возрастает с ростом давления (к питательной воде, поступающей из конденсатора, добавляется конденсат пара из отборов).

Т-S диаграмма цикла с регенеративным подогревом.

Диаграмма состояния вещества, i-s-диаграмма

Изображение циклов и процессов в T-S диаграмме обладает большой наглядностью, поскольку площади на данной диаграмме соответствуют работе или энергии процесса. Эта наглядность позволяет визуально сравнивать различные процессы и циклы, однако эта наглядность является одновременно и недостатком Т-S диаграммы, поскольку измерить площадь сложной фигуры очень сложно, а все основные циклы, как мы видели представляют собой именно комбинацию сложных кривых, исключение составляет только цикл Карно.

Для практического применения более удобна диаграмма тепловых процессов, на которых значение энергии, теплоты или работы соответствует не площади а отрезку, такой диаграммой является i,s –диаграмма. По вертикальной оси на этой диаграмме откладывается энтальпия по горизонтальной – энтропия. Такая диаграмма с нанесенными на нее линиями постоянного давления (изобарами), линиями постоянной температуры (изотермами), линиям постоянного паросодержания и постоянным постоянного объема, называется диаграмма состояния вещества.

В тепловых расчетах паросиловых циклов используется диаграмма состояния воды. На рисунке 10 изображен цикл с перегревом пара на диаграмме состояния воды (см рисунок 10).

На диаграмме состояния воды изображены линии постоянных температур, давлений и паросодержания. Линия постоянного паросодержания X=1 (вся вода находится в виде пара), является разделительной, при параметрах соответствующим точкам выше этой линии существует один пар, ниже – паро-водяная смесь.

Цикл с перегревом пара в i -S диаграмме состояния воды.

Точка 1 верхняя точка цикла, по линии 1-2 происходит адиабатное расширение пара от давления Р1 до давления Р2 (Р1>Р2). При этом происходит снижение температуры пара с Т1 до Т4, и увлажнение пара до паросодержания X1<1. Величина отрезка 1 – 2 соответствует работе совершенной паром в процессе расширения, в некотором масштабе схемы. (Далее подобная диаграмма будет рассмотрена с конкретными цифрами, в данный момент нас интересует только сам принцип определения величины работы.)

Пар с параметрами соответствующими точке 2 поступает в конденсатор, где при постоянных давлении P2 и температуре Т4, происходит конденсация пара, линия процесса 2 – 3. Характерной особенность данного процесса является то что, температура и давления остаются постоянным, меняется только паросодержание от Х1 до нуля, линии изображающие этот процесс являются прямыми причем изотерма (Т4=const) совпадает с изобарой (P2 = const).

Вода с параметрами соответствующими точке 3 на диаграмме поступает в насос. Здесь происходит процесс адиабатного сжатия воды от давления Р2 до давления Р1 по линия процесса 3-4. Линия 4–5, это линия нагрева воды до температуры насыщения Т3 при постоянном давлении Р1 этот участок не является прямой линией, а представляет собой некую кривую.

В точке 5 начинается испарение воды. Изобара P1 = const от этой точки превращается в прямую линию, которая совпадает с прямой линией изотермой (Т3=const) в плоть до точки 6, где вся вода превращается в пар (паросодержание Х=1) .

Процесс 6 – 1 это процесс перегрева пара при постоянном давлении P1=сonst. В точке 6 происходит разделения линий процессов изобарического (изобара P1=сonst) и точки изотермического (изотерма Т3=const). По линии 6–1 пар нагревается до температуры Т1 – цикл замкнулся

 

 

2. Тепловое излучение.

Тела, нагретые до высоких температур, светятся, т.е. испускают электромагнитное излучение. Электромагнитное излучение всех длин волн обуславливается колебаниями электрических зарядов, входящих в состав вещества, т. е. электронов и ионов. Вследствие значительной массы колеблющихся ионов при их колебании излучается длинноволновое электромагнитное излучение, соответствующее инфракрасному диапазону длин волн. Движение электронов, входящих в состав атомов или молекул, инициирует более коротковолновое излучение, соответствующее видимому и ультрафиолетовому излучениям. Излучение тела сопровождается потерей энергии. Для того чтобы обеспечить длительное излучение энергии, совершаемое за счет энергии теплового движения заряженных частиц вещества, необходимо пополнять убыль внутренней энергии, сообщая телу соответствующее количество теплоты. В состоянии равновесия тело излучает столько энергии, сколько поглощает ее. Тепловое излучение является равновесным излучением. Если тело начнет излучать в единицу времени больше энергии, чем получает ее, то температура тела начнет понижаться и уменьшится количество излучаемой телом энергии до уровня, когда, наконец, не установится равновесие. Такое равновесное состояние устойчиво, т.е. при нарушении его, равновесное состояние вновь установится. Все другие виды излучения тел являются неравновесными и называются люминесценцией, которая возникает под действием света (фотолюминесценция), потока быстрых электронов (катодолюминесценция), энергии электрического поля (электролюминесценция) и химических превращений внутри тела (хемилюминесценция).

Тепловое излучение свойственно всем телам при температуре выше 0 К. Поскольку тепловое излучение является равновесным, то для описания его свойств можно использовать законы термодинамики.

Количественной характеристикой интенсивности теплового излучения является энергетическая светимость тела R(T) - количество энергии, испускаемой единицей поверхности нагретого тела в единицу времени во всех направлениях (в телесном угле 2π, соответствующем полусфере). Эта величина является интегральной характеристикой излучающего тела, так как определяет энергию излучаемых электромагнитных волн различных частот ν. Поток энергии, приходящийся на единичный интервал частот, называется излучательной способностью тела r(ν,t), очевидно, что

 

r(ν,T) = d R(T)/d ν,(1)

 

где d R(T) - энергия электромагнитного излучения, испускаемого за единицу времени (мощность излучения) с единицы площади поверхности тела в интервале частот от ν до ν + dν. Величины R(T) и r(ν,T) зависят от природы излучающего тела и связаны соотношением

(T) = ∞∫0 r(ν,T) d ν.(2)

Информация о работе Цикл Ренкина.Тепловое излучение